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Section 1.1 A Preview of Calculus
• Understand what calculus is and how it compares with precalculus.
• Understand that the tangent line problem is basic to calculus.
• Understand that the area problem is also basic to calculus.

What Is Calculus?
Calculus is the mathematics of change—velocities and accelerations. Calculus is also
the mathematics of tangent lines, slopes, areas, volumes, arc lengths, centroids,
curvatures, and a variety of other concepts that have enabled scientists, engineers, and
economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations,
tangent lines, slopes, and so on, there is a fundamental difference between precalculus
mathematics and calculus. Precalculus mathematics is more static, whereas calculus
is more dynamic. Here are some examples. 

• An object traveling at a constant velocity can be analyzed with precalculus
mathematics. To analyze the velocity of an accelerating object, you need calculus. 

• The slope of a line can be analyzed with precalculus mathematics. To analyze the
slope of a curve, you need calculus.

• A tangent line to a circle can be analyzed with precalculus mathematics. To
analyze a tangent line to a general graph, you need calculus.

• The area of a rectangle can be analyzed with precalculus mathematics. To analyze
the area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of
precalculus mathematics through the use of a limit process. So, one way to answer the
question “What is calculus?” is to say that calculus is a “limit machine” that involves
three stages. The first stage is precalculus mathematics, such as the slope of a line or
the area of a rectangle. The second stage is the limit process, and the third stage is a
new calculus formulation, such as a derivative or integral.

Some students try to learn calculus as if it were simply a collection of new
formulas. This is unfortunate. If you reduce calculus to the memorization of differen-
tiation and integration formulas, you will miss a great deal of understanding,
self-confidence, and satisfaction.

On the following two pages some familiar precalculus concepts coupled with
their calculus counterparts are listed. Throughout the text, your goal should be to learn
how precalculus formulas and techniques are used as building blocks to produce the
more general calculus formulas and techniques. Don’t worry if you are unfamiliar
with some of the “old formulas” listed on the following two pages—you will be
reviewing all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to
keep track of where you are relative to the three stages involved in the study of
calculus. For example, the first three chapters break down as shown.

Chapter P: Preparation for Calculus Precalculus

Chapter 1: Limits and Their Properties Limit process

Chapter 2: Differentiation Calculus

GRACE CHISHOLM YOUNG (1868–1944)

Grace Chisholm Young received her degree
in mathematics from Girton College in
Cambridge, England. Her early work was
published under the name of William Young,
her husband. Between 1914 and 1916, Grace
Young published work on the foundations of
calculus that won her the Gamble Prize from
Girton College.

STUDY TIP As you progress through
this course, remember that learning
calculus is just one of your goals. Your
most important goal is to learn how to
use calculus to model and solve real-life
problems. Here are a few problem-
solving strategies that may help you.
• Be sure you understand the question.

What is given? What are you asked
to find?

• Outline a plan. There are many
approaches you could use: look for 
a pattern, solve a simpler problem,
work backwards, draw a diagram,
use technology, or any of many
other approaches. 

• Complete your plan. Be sure to
answer the question. Verbalize your
answer. For example, rather than
writing the answer as it
would be better to write the answer
as “The area of the region is
4.6 square meters.”

• Look back at your work. Does your
answer make sense? Is there a way
you can check the reasonableness of
your answer?

x ! 4.6,

Precalculus
mathematics

Limit
process Calculus
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Without Calculus With Differential Calculus

Value of Limit of as
when approaches 

Slope of a line Slope of a curve

Secant line to Tangent line to
a curve a curve

Average rate of Instantaneous
change between rate of change

and at 

Curvature Curvature
of a circle of a curve

Height of a Maximum height
curve when of a curve on

an interval

Tangent plane Tangent plane
to a sphere to a surface

Direction of Direction of
motion along motion along
a line a curve
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Without Calculus With Integral Calculus

Area of a Area under
rectangle a curve

Work done by a Work done by a
constant force variable force

Center of a Centroid of
rectangle a region

Length of a Length of
line segment an arc

Surface area Surface area of a
of a cylinder solid of revolution

Mass of a solid Mass of a solid
of constant of variable
density density

Volume of a Volume of a 
rectangular region under 
solid a surface

Sum of a Sum of an
finite number infinite number
of terms of terms
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The Tangent Line Problem
The notion of a limit is fundamental to the study of calculus. The following brief
descriptions of two classic problems in calculus—the tangent line problem and the
area problem—should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function and a point on its graph
and are asked to find an equation of the tangent line to the graph at point as shown
in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the
tangent line at a point is equivalent to finding the slope of the tangent line at You
can approximate this slope by using a line through the point of tangency and a second
point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If

is the point of tangency and 

is a second point on the graph of the slope of the secant line through these two
points is given by

As point approaches point the slope of the secant line approaches the slope
of the tangent line, as shown in Figure 1.2(b). When such a “limiting position” exists,
the slope of the tangent line is said to be the limit of the slope of the secant line.
(Much more will be said about this important problem in Chapter 2.)
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(b) As approaches the secant lines
approach the tangent line.
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E X P L O R A T I O N

The following points lie on the graph of 

Each successive point gets closer to the point Find the slope of the secant
line through and and and so on. Graph these secant lines on a graph-
ing utility. Then use your results to estimate the slope of the tangent line to the
graph of at the point P.f
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The Area Problem
In the tangent line problem, you saw how the limit process can be applied to the slope
of a line to find the slope of a general curve. A second classic problem in calculus is
finding the area of a plane region that is bounded by the graphs of functions. This
problem can also be solved with a limit process. In this case, the limit process is
applied to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function
the axis, and the vertical lines and as shown in Figure 1.3.

You can approximate the area of the region with several rectangular regions, as shown
in Figure 1.4. As you increase the number of rectangles, the approximation tends
to become better and better because the amount of area missed by the rectangles
decreases. Your goal is to determine the limit of the sum of the areas of the rectangles
as the number of rectangles increases without bound.
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Area under a curve
Figure 1.3

x
a b

y = f (x)

y

Approximation using four rectangles
Figure 1.4
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Approximation using eight rectangles

E X P L O R A T I O N

Consider the region bounded by the graphs of and as
shown in part (a) of the figure. The area of the region can be approximated by two
sets of rectangles—one set inscribed within the region and the other set circum-
scribed over the region, as shown in parts (b) and (c). Find the sum of the areas of
each set of rectangles. Then use your results to approximate the area of the region.

x ! 1,y ! 0,f !x" ! x2,

HISTORICAL NOTE

In one of the most astounding events ever to
occur in mathematics, it was discovered that
the tangent line problem and the area problem
are closely related. This discovery led to the
birth of calculus. You will learn about the
relationship between these two problems when
you study the Fundamental Theorem of
Calculus in Chapter 4.
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The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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E x e r c i s e s  f o r  S e c t i o n  1 . 1

In Exercises 1– 6, decide whether the problem can be solved using
precalculus, or whether calculus is required. If the problem can
be solved using precalculus, solve it. If the problem seems to
require calculus, explain your reasoning and use a graphical or
numerical approach to estimate the solution.

1. Find the distance traveled in 15 seconds by an object traveling at
a constant velocity of 20 feet per second.

2. Find the distance traveled in 15 seconds by an object moving
with a velocity of feet per second.

3. A bicyclist is riding on a path modeled by the function
where and are measured in miles.

Find the rate of change of elevation when 

Figure for 3 Figure for 4

4. A bicyclist is riding on a path modeled by the function
where and are measured in miles. Find the

rate of change of elevation when 

5. Find the area of the shaded region.

Figure for 5 Figure for 6

6. Find the area of the shaded region.

7. Secant Lines Consider the function and the
point on the graph of 

(a) Graph and the secant lines passing through and
for -values of 2, 1.5, and 0.5.

(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the tangent
line of at Describe how to improve your approxi-
mation of the slope.

8. Secant Lines Consider the function and the point
on the graph of 

(a) Graph and the secant lines passing through and
for -values of 1, 3, and 5.

(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the
tangent line of at Describe how to improve your
approximation of the slope.

9. (a) Use the rectangles in each graph to approximate the area of
the region bounded by and 

(b) Describe how you could continue this process to obtain a
more accurate approximation of the area.

10. (a) Use the rectangles in each graph to approximate the area of
the region bounded by and 

(b) Describe how you could continue this process to obtain a
more accurate approximation of the area.
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Writing About Concepts
11. Consider the length of the graph of from 

to 

(a) Approximate the length of the curve by finding the
distance between its two endpoints, as shown in the
first figure.

(b) Approximate the length of the curve by finding the sum
of the lengths of four line segments, as shown in the
second figure.

(c) Describe how you could continue this process to obtain a
more accurate approximation of the length of the curve.
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Section 1.2 Finding Limits Graphically and Numerically
• Estimate a limit using a numerical or graphical approach.
• Learn different ways that a limit can fail to exist.
• Study and use a formal definition of limit.

An Introduction to Limits
Suppose you are asked to sketch the graph of the function given by

For all values other than you can use standard curve-sketching techniques.
However, at it is not clear what to expect. To get an idea of the behavior of the
graph of near you can use two sets of values—one set that approaches 1
from the left and one set that approaches 1 from the right, as shown in the table.

The graph of is a parabola that has a gap at the point as shown in Figure
1.5. Although cannot equal 1, you can move arbitrarily close to 1, and as a result

moves arbitrarily close to 3. Using limit notation, you can write

This is read as “the limit of as approaches 1 is 3.”

This discussion leads to an informal description of a limit. If becomes arbitrarily
close to a single number as approaches from either side, the limit of as 
approaches is This limit is written as L.c,
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The limit of as approaches 1 is 3.
Figure 1.5
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E X P L O R A T I O N

The discussion above gives an example of how you can estimate a limit numeri-
cally by constructing a table and graphically by drawing a graph. Estimate the
following limit numerically by completing the table.

Then use a graphing utility to estimate the limit graphically.
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EXAMPLE 1 Estimating a Limit Numerically

Evaluate the function at several points near and use
the results to estimate the limit

Solution The table lists the values of for several values near 0.

From the results shown in the table, you can estimate the limit to be 2. This limit is
reinforced by the graph of (see Figure 1.6).

In Example 1, note that the function is undefined at and yet appears to
be approaching a limit as approaches 0. This often happens, and it is important to
realize that the existence or nonexistence of at has no bearing on the
existence of the limit of as approaches 

EXAMPLE 2 Finding a Limit

Find the limit of as approaches 2 where is defined as

Solution Because for all other than you can conclude that the
limit is 1, as shown in Figure 1.7. So, you can write

The fact that has no bearing on the existence or value of the limit as 
approaches 2. For instance, if the function were defined as 

the limit would be the same.

So far in this section, you have been estimating limits numerically and graphically.
Each of these approaches produces an estimate of the limit. In Section 1.3, you will
study analytic techniques for evaluating limits. Throughout the course, try to develop a
habit of using this three-pronged approach to problem solving.

1. Numerical approach Construct a table of values.

2. Graphical approach Draw a graph by hand or using technology.

3. Analytic approach Use algebra or calculus.
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Limits That Fail to Exist
In the next three examples you will examine some limits that fail to exist.

EXAMPLE 3 Behavior That Differs from the Right and Left

Show that the limit does not exist.

Solution Consider the graph of the function From Figure 1.8, you can
see that for positive values

and for negative values

This means that no matter how close gets to 0, there will be both positive and
negative values that yield and Specifically, if (the lowercase
Greek letter delta) is a positive number, then for values satisfying the inequality

you can classify the values of as shown.

This implies that the limit does not exist.

EXAMPLE 4 Unbounded Behavior

Discuss the existence of the limit

Solution Let In Figure 1.9, you can see that as approaches 0 from
either the right or the left, increases without bound. This means that by choosing

close enough to 0, you can force to be as large as you want. For instance,
will be larger than 100 if you choose that is within of 0. That is,

Similarly, you can force to be larger than 1,000,000, as follows.

Because is not approaching a real number as approaches 0, you can conclude
that the limit does not exist.
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EXAMPLE 5 Oscillating Behavior

Discuss the existence of the limit 

Solution Let In Figure 1.10, you can see that as approaches 0,
oscillates between and 1. So, the limit does not exist because no matter how

small you choose , it is possible to choose and within units of 0 such that
and as shown in the table.

There are many other interesting functions that have unusual limit behavior. An
often cited one is the Dirichlet function

Because this function has no limit at any real number it is not continuous at any real
number You will study continuity more closely in Section 1.4.c.

c,

f !x" ! %0,
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   if x is rational.
   if x is irrational.
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PETER GUSTAV DIRICHLET (1805–1859)

In the early development of calculus, the
definition of a function was much more
restricted than it is today, and “functions”
such as the Dirichlet function would not
have been considered. The modern definition
of function was given by the German
mathematician Peter Gustav Dirichlet.
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Common Types of Behavior Associated with Nonexistence of a Limit

1. approaches a different number from the right side of than it approaches
from the left side.

2. increases or decreases without bound as approaches 

3. oscillates between two fixed values as approaches c.xf !x"
c.xf !x"

cf !x"

TECHNOLOGY PITFALL When you use a graphing utility to investigate the
behavior of a function near the value at which you are trying to evaluate a limit,
remember that you can’t always trust the pictures that graphing utilities draw. If you
use a graphing utility to graph the function in Example 5 over an interval containing
0, you will most likely obtain an incorrect graph such as that shown in Figure 1.11.
The reason that a graphing utility can’t show the correct graph is that the graph has
infinitely many oscillations over any interval that contains 0.

x-

Editable Graph

Try It Exploration A Open Exploration

MathBio



.

52 CHAPTER 1 Limits and Their Properties

A Formal Definition of Limit
Let’s take another look at the informal description of a limit. If becomes
arbitrarily close to a single number as approaches from either side, then the limit
of as approaches is written as

At first glance, this description looks fairly technical. Even so, it is informal because
exact meanings have not yet been given to the two phrases

“ becomes arbitrarily close to 

and

approaches 

The first person to assign mathematically rigorous meanings to these two phrases was
Augustin-Louis Cauchy. His - definition of limit is the standard used today.

In Figure 1.12, let (the lowercase Greek letter epsilon) represent a (small)
positive number. Then the phrase becomes arbitrarily close to means that 
lies in the interval Using absolute value, you can write this as

Similarly, the phrase approaches means that there exists a positive number 
such that lies in either the interval or the interval This fact can
be concisely expressed by the double inequality

The first inequality

The distance between and is more than 0.

expresses the fact that The second inequality

is within units of 

says that is within a distance of 

NOTE Throughout this text, the expression

implies two statements—the limit exists and the limit is 

Some functions do not have limits as but those that do cannot have two 
different limits as That is, if the limit of a function exists, it is unique (see
Exercise 69).
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FOR FURTHER INFORMATION For
more on the introduction of rigor to
calculus, see “Who Gave You the
Epsilon? Cauchy and the Origins of
Rigorous Calculus” by Judith V.
Grabiner in The American Mathematical
Monthly.

Definition of Limit

Let be a function defined on an open interval containing (except possibly at
) and let be a real number. The statement

means that for each there exists a such that if 

then ( f !x" # L( < '.0 < (x # c( < %,

% > 0' > 0

lim
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The next three examples should help you develop a better understanding of the 
definition of limit.

EXAMPLE 6 Finding a for a Given 

Given the limit 

find such that whenever 

Solution In this problem, you are working with a given value of —namely,
To find an appropriate notice that

Because the inequality is equivalent to 
you can choose This choice works because

implies that

as shown in Figure 1.13.

NOTE In Example 6, note that 0.005 is the largest value of that will guarantee
whenever Any smaller positive value of would

also work.

In Example 6, you found a -value for a given . This does not prove the existence
of the limit. To do that, you must prove that you can find a for any as shown in
the next example.

EXAMPLE 7 Using the - Definition of Limit

Use the - definition of limit to prove that

Solution You must show that for each there exists a such that
whenever Because your choice of depends

on you need to establish a connection between the absolute values 
and 

So, for a given you can choose This choice works because

implies that

as shown in Figure 1.14.

(!3x # 2" # 4( ! 3(x # 2( < 3)'

3* ! '

0  <  (x # 2(  <  % !
'

3

% ! ''3.' > 0

(!3x # 2" # 4( ! (3x # 6( ! 3(x # 2(
(x # 2(.

(!3x # 2" # 4(',
%0 < (x # 2( < %.(!3x # 2" # 4( < '

% > 0' > 0,

lim
x→2

 !3x # 2" ! 4.

%'

!"

',%
'%

%0 < (x # 3( < %.(!2x # 5" # 1( < 0.01
%

(!2x # 5" # 1( ! 2(x # 3( < 2!0.005" ! 0.01

0 < (x # 3( < 0.005

% ! 1
2!0.01" ! 0.005.

2(x # 3( < 0.01,(!2x # 5" # 1( < 0.01

(!2x # 5" # 1( ! (2x # 6( ! 2(x # 3(.
%,' ! 0.01.

'

0 < (x # 3( < %.(!2x # 5" # 1( < 0.01%

lim
x→3

 !2x # 5" ! 1

"!

'-%

x

y

2

3

4

1

1 2 3 4

− δ

δ

ε

ε

f (x) = 3x − 2

x = 2 + 
x = 2
x = 2 − 

y = 4 + 

y = 4

y = 4 − 

The limit of as approaches 2 is 4.
Figure 1.14

xf !x"

x

y

2

1

−1

−2

1 2 3 4

f (x) = 2x − 5

x = 2.995

x = 3.005
x = 3

y = 1.01

y = 0.99
y = 1

The limit of as approaches 3 is 1.
Figure 1.13
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EXAMPLE 8 Using the - Definition of Limit

Use the definition of limit to prove that

Solution You must show that for each there exists a such that

whenever

To find an appropriate begin by writing For all in the
interval you know that So, letting be the minimum of and
1, it follows that, whenever you have 

as shown in Figure 1.15.

Throughout this chapter you will use the definition of limit primarily to prove
theorems about limits and to establish the existence or nonexistence of particular types
of limits. For finding limits, you will learn techniques that are easier to use than the 
definition of limit.

'-%

'-%

(x2 # 4( ! (x # 2((x $ 2( < )'

5*!5" ! '

0 < (x # 2( < %,
''5%(x $ 2( < 5.!1, 3",
x(x2 # 4( ! (x # 2((x $ 2(.%,

0 < (x # 2( < %.(x2 # 4( < '

% > 0' > 0,

lim
x→2

 x2 ! 4.

'-%

!"

(2 +   )2

(2 −   )2

2 +

2 −

4 −

4 +

2

4

δ

δ

δ

δ

ε

ε

f (x) = x2

The limit of as approaches 2 is 4.
Figure 1.15
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In Exercises 1–8, complete the table and use the result to
estimate the limit. Use a graphing utility to graph the function
to confirm your result.

1.

2.

3.

4.

5.

6.

7.

8. lim
x 0

 cos x ! 1
x

lim
x 0

 sin x
x

lim
x 4

 
!x""x # 1#$ ! "4"5#

x ! 4

lim
x 3

 
!1""x # 1#$ ! "1"4#

x ! 3

lim
x !3

 
%1 ! x ! 2

x # 3

lim
x 0

 
%x # 3 ! %3

x

lim
x 2

  
x ! 2
x 2 ! 4

lim
x 2

  
x ! 2

x 2 ! x ! 2

2.9 2.99 2.999 3.001 3.01 3.1

f &x'

x

3.9 3.99 3.999 4.001 4.01 4.1

f &x'

x

0.001 0.01 0.1

f &x'

!0.001!0.01!0.1x

0.001 0.01 0.1

f &x'

!0.001!0.01!0.1x

1.9 1.99 1.999 2.001 2.01 2.1

f &x'

x

1.9 1.99 1.999 2.001 2.01 2.1

f &x'

x

f &x'

!2.9!2.99!2.999!3.001!3.01!3.1x

0.001 0.01 0.1

f &x'

!0.001!0.01!0.1x
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In Exercises 9–18, use the graph to find the limit (if it exists). If
the limit does not exist, explain why.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19 and 20, use the graph of the function to decide
whether the value of the given quantity exists. If it does, find it.
If not, explain why.

19. (a)

(b)

(c)

(d)

20. (a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

In Exercises 21 and 22, use the graph of to identify the values
of for which exists.

21.

22.

In Exercises 23 and 24, sketch the graph of Then identify the
values of for which exists.

23.

24. f "x# $ (sin x,
1 ! cos x,
cos x,

x < 0
0 x %
x > %

f "x# $ (x2,
8 ! 2x,
4,

x 2
2 < x < 4
x 4

lim
x c

 f &x'c
f.

y

x
24 4 6

2

4

6

y

x
2 42

2

4

6

lim
x c

 f &x'c
f

lim
x 4

 f "x#

f "4#
lim
x 2

 f "x#

f "2#
lim
x 0

 f "x#

f "0#
lim

x !2
 f "x#

y

x
11

2

2 3 4 5

2

3
4

2

f "!2#

lim
x 4

 f "x#

f "4#
lim
x 1

 f "x#

y

x
11 2 3 4 5 6

1
2
3

5
6

f "1#

f

x

2

1

2 2 2
3

y

x
1

1

1

1

y

lim
x %"2

 tan xlim
x 0

 cos 
1
x

x

2 2

2

y

x
1 2

1

y

lim
x 0

 sec xlim
x 1

 sin % x

x

2

1

1

2

2 4

y

x

4
3
2

2
3
4

1

6 7 8 9

y

lim
x 3

 
1

x ! 3
lim
x 5

 )x ! 5)
x ! 5

x
1 22 1

4

3

1

y

x
1 2 3 4

4

3

2

1

y

f "x# $ (x2 # 2,
1,

     x & 1
     x $ 1

f "x# $ (4 ! x,
0,

     x & 2
     x $ 2

lim
x 1

 f "x#lim
x 2

 f "x#

x
1 22 1

4

3

1

y

x
1 2 3 4

4

3

2

1

y

lim
x 1

 "x 2 # 2#lim
x 3

 "4 ! x#
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In Exercises 25 and 26, sketch a graph of a function that
satisfies the given values. (There are many correct answers.)

25. is undefined. 26.

does not exist.

27. Modeling Data The cost of a telephone call between two
cities is $0.75 for the first minute and $0.50 for each additional
minute or fraction thereof. A formula for the cost is given by

where is the time in minutes.

Note: greatest integer such that For example,
and 

(a) Use a graphing utility to graph the cost function for

(b) Use the graph to complete the table and observe the
behavior of the function as approaches 3.5. Use the graph
and the table to find

(c) Use the graph to complete the table and observe the
behavior of the function as approaches 3.

Does the limit of as approaches 3 exist? Explain.

28. Repeat Exercise 27 for

29. The graph of is shown in the figure. Find such
that if then 

30. The graph of

is shown in the figure. Find such that if then

31. The graph of

is shown in the figure. Find such that if then

32. The graph of

is shown in the figure. Find such that if then

In Exercises 33–36, find the limit Then find such that
whenever 

33.

34.

35.

36. lim
x 5

 "x 2 # 4#

lim
x 2

 "x 2 ! 3#

lim
x 4

 *4 !
x
2+

lim
x 2

 "3x # 2#

0 < )x ! c) < ".) f &x' ! L) < 0.01
" > 0L.

x
1 42 3

1

3

2

4 f

y

y = 2.8
y = 3

y = 3.2

) f "x# ! 3) < 0.2.
0 < )x ! 2) < ''

f "x# $ x2 ! 1

x
1 2

1

y = 0.9
y = 1

y = 1.1

2

f

y
) f "x# ! 1) < 0.1.

0 < )x ! 1) < ''

f "x# $ 2 !
1
x

y

x
4321

2.0

1.5

1.0

0.5

1.01

201
101

199
99

0.99
1.00

2

) f "x# ! 1) < 0.01.
0 < )x ! 2) < ''

f "x# $
1

x ! 1

y

x
2.5 3.02.01.51.00.5

5

4

3

2

2.41.6

3.4

2.6

) f "x# ! 3) < 0.4.0 < )x ! 2) < '
'f "x# $ x # 1

C"t# $ 0.35 ! 0.12,!"t ! 1#-.

tC"t#

t

lim
t 3.5

 C "t#.

t

0 < t 5.

,!1.6- $ !2.#,3.2- $ 3
n x.n,x- $"

t

C"t# $ 0.75 ! 0.50 ,!"t ! 1#-

lim
x 2

 f "x#lim
x 2

 f "x# $ 3

lim
x !2

 f "x# $ 0f "2# $ 6

f "2# $ 0lim
x 0

 f "x# $ 4

f "!2# $ 0f "0#

f
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In Exercises 37–48, find the limit Then use the - definition
to prove that the limit is 

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Writing In Exercises 49–52, use a graphing utility to graph the
function and estimate the limit (if it exists). What is the domain
of the function? Can you detect a possible error in determining
the domain of a function solely by analyzing the graph generated
by a graphing utility? Write a short paragraph about the
importance of examining a function analytically as well as
graphically.

49.

50.

51.

52.

57. Jewelry A jeweler resizes a ring so that its inner circumference
is 6 centimeters.

(a) What is the radius of the ring?

(b) If the ring’s inner circumference can vary between
5.5 centimeters and 6.5 centimeters, how can the radius
vary?

(c) Use the - definition of limit to describe this situation.
Identify and 

58. Sports A sporting goods manufacturer designs a golf ball
having a volume of 2.48 cubic inches.

(a) What is the radius of the golf ball?

(b) If the ball’s volume can vary between 2.45 cubic inches and
2.51 cubic inches, how can the radius vary?

(c) Use the - definition of limit to describe this situation.
Identify and 

59. Consider the function Estimate the limit

by evaluating at values near 0. Sketch the graph of 

60. Consider the function

Estimate 

by evaluating at values near 0. Sketch the graph of 

61. Graphical Analysis The statement

means that for each there corresponds a such that
if then

If then

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval such that
the graph of the left side is below the graph of the right side of
the inequality.

"2 ! ', 2 # '#

)x2 ! 4
x ! 2

! 4) < 0.001.

( $ 0.001,

)x2 ! 4
x ! 2

! 4) < (.

0 < )x ! 2) < ',
' > 0( > 0

lim
x 2

 
x 2 ! 4
x ! 2

$ 4

f.x-f

lim
x 0

 )x # 1) ! )x ! 1)
x

f "x# $ )x # 1) ! )x ! 1)
x

.

f.x-f

lim
x 0

 "1 # x#1"x

f "x# $ "1 # x#1"x.

'.(
'(

'.(
'(

lim
x 3

 f "x#

f "x# $
x ! 3
x 2 ! 9

lim
x 9

 f "x#

f "x# $
x ! 9
%x ! 3

lim
x 3

 f "x#

f "x# $
x ! 3

x 2 ! 4x # 3

lim
x 4

 f "x)

f "x# $
%x # 5 ! 3

x ! 4

lim
x !3

 "x 2 # 3x#

lim
x 1

 "x 2 # 1#

lim
x 3

 )x ! 3)
lim

x !2
 )x ! 2)

lim
x 4

 %x

lim
x 0

 3%x

lim
x 2

 "!1#

lim
x 6

 3

lim
x 1

 "2
3x # 9#

lim
x !4

 "1
2x ! 1#

lim
x !3

 "2x # 5#

lim
x 2

 "x # 3#

L.
"(L. Writing About Concepts (continued)

56. Identify three types of behavior associated with the nonex-
istence of a limit. Illustrate each type with a graph of a
function.

Writing About Concepts
53. Write a brief description of the meaning of the notation

54. If can you conclude anything about the limit of
as approaches 2? Explain your reasoning.

55. If the limit of as approaches 2 is 4, can you conclude
anything about Explain your reasoning.f "2#?

xf "x#
xf "x#

f "2# $ 4,

lim
x 8

 f "x# $ 25.
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62. Graphical Analysis The statement

means that for each there corresponds a such that
if then

If then

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval such that the
graph of the left side is below the graph of the right side of the
inequality.

True or False? In Exercises 63–66, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

63. If is undefined at then the limit of as 
approaches does not exist.

64. If the limit of as approaches is 0, then there must exist
a number such that 

65. If then 

66. If then 

67. Consider the function 

(a) Is a true statement? Explain.

(b) Is a true statement? Explain.

68. Writing The definition of limit on page 52 requires that is a
function defined on an open interval containing except
possibly at Why is this requirement necessary?

69. Prove that if the limit of as exists, then the limit must
be unique. [Hint: Let

and

and prove that ]

70. Consider the line where Use the 
definition of limit to prove that 

71. Prove that is equivalent to 

72. (a) Given that

prove that there exists an open interval containing 0
such that for all in

(b) Given that where prove that there

exists an open interval containing such that
for all in 

73. Programming Use the programming capabilities of a graph-
ing utility to write a program for approximating 

Assume the program will be applied only to functions whose
limits exist as approaches Let and generate two
lists whose entries form the ordered pairs

for and 

74. Programming Use the program you created in Exercise 73 to
approximate the limit

lim
x 4

 
x 2 ! x ! 12

x ! 4
.

4.n $ 0, 1, 2, 3,

"c ± !0.1$ n ,  f "c ± !0.1$ n##

y1 $ f "x#c.x

lim
x c

 f "x#.

"a, b#.x & cg"x# > 0
c"a, b#

L > 0,lim
x c

 g"x# $ L,

"a, b#.
x & 0"3x # 1#"3x ! 1#x2 # 0.01 > 0

"a, b#

lim
x 0

 "3x # 1#"3x ! 1#x2 # 0.01 $ 0.01

lim
x c

 ! f "x# ! L$ $ 0.lim
x c

 f "x# $ L

lim
x c

 f "x# $ mc # b.
(-'m & 0.f "x# $ mx # b,

L1 $ L2.

lim
x c

 f "x# $ L 2lim
x c

 f "x# $ L1

x cf "x#
c.

c,
f

lim
x 0

%x $ 0

lim
x 0.25

%x $ 0.5

f "x# $ %x.

f "c# $ L.lim
x c

 f "x# $ L,

lim
x c

 f "x# $ L.f "c# $ L,

f "k# < 0.001.k
cxf "x#

c
xf "x#x $ c,f

"3 ! ', 3 # '#

)x2 ! 3x
x ! 3

! 3) < 0.001.

( $ 0.001,

)x2 ! 3x
x ! 3

! 3) < (.

0 < )x ! 3) < ',
' > 0( > 0

lim
x 3

 
x 2 ! 3x
x ! 3

Putnam Exam Challenge

75. Inscribe a rectangle of base and height and an isosceles
triangle of base in a circle of radius one as shown. For what
value of do the rectangle and triangle have the same area?

76. A right circular cone has base of radius 1 and height 3. A cube
is inscribed in the cone so that one face of the cube is contained 
in the base of the cone. What is the side-length of the cube?

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Section 1.3 Evaluating Limits Analytically
• Evaluate a limit using properties of limits.
• Develop and use a strategy for finding limits.
• Evaluate a limit using dividing out and rationalizing techniques.
• Evaluate a limit using the Squeeze Theorem.

Properties of Limits
In Section 1.2, you learned that the limit of as approaches does not depend on
the value of at It may happen, however, that the limit is precisely In such
cases, the limit can be evaluated by direct substitution. That is,

Substitute for 

Such well-behaved functions are continuous at You will examine this concept more
closely in Section 1.4.

Proof To prove Property 2 of Theorem 1.1, you need to show that for each 
there exists a such that whenever To do this,
choose The second inequality then implies the first, as shown in Figure 1.16.
This completes the proof. (Proofs of the other properties of limits in this section are
listed in Appendix A or are discussed in the exercises.)

EXAMPLE 1 Evaluating Basic Limits

a. b. c.

The editable graph feature allows you to edit the graph of a function to visually 
evaluate the limit as approaches 

a. b. c.

c.x

lim
x→2

 x2 ! 22 ! 4lim
x→"4

 x ! "4lim
x→2

 3 ! 3

# ! $.
0 < !x " c! < #.!x " c! < $# > 0

$ > 0

c.

x.clim
x→c

 f"x# ! f"c#.

f"c#.x ! c.f
cxf"x#

NOTE When you encounter new nota-
tions or symbols in mathematics, be sure
you know how the notations are read.
For instance, the limit in Example 1(c) is
read as “the limit of as approaches
2 is 4.”

xx2

x

=

=

c +

c +

c −

c −

c

ε

ε

δ δ

δ

δ
ε

ε

f (c) = c

f (c) = xy

Figure 1.16

THEOREM 1.1 Some Basic Limits

Let and be real numbers and let be a positive integer.

1. 2. 3. lim
x→c

 xn ! cnlim
x→c

 x ! clim
x→c

 b ! b

ncb

THEOREM 1.2 Properties of Limits

Let and be real numbers, let be a positive integer, and let and be func-
tions with the following limits.

and

1. Scalar multiple:

2. Sum or difference:

3. Product:

4. Quotient: provided 

5. Power: lim
x→c

 $ f"x#%n ! Ln

K % 0lim
x→c

 
f"x#
g"x# !

L
K

,

lim
x→c

 $ f"x#g"x#% ! LK

lim
x→c

 $ f"x# ± g"x#% ! L ± K

lim
x→c

 $b f"x#% ! bL

lim
x→c

 g"x# ! Klim
x→c

 f"x# ! L

gfncb
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60 CHAPTER 1 Limits and Their Properties

EXAMPLE 2 The Limit of a Polynomial

Property 2

Property 1

Example 1

Simplify.

The editiable graph feature allows you to edit the graph of a function to visually 
evaluate the limit as approaches 

In Example 2, note that the limit (as ) of the polynomial function
is simply the value of at 

This direct substitution property is valid for all polynomial and rational functions with
nonzero denominators.

EXAMPLE 3 The Limit of a Rational Function

Find the limit:

Solution Because the denominator is not 0 when you can apply Theorem 1.3
to obtain

The editiable graph feature allows you to edit the graph of a function to visually 
evaluate the limit as approaches 

Polynomial functions and rational functions are two of the three basic types of
algebraic functions. The following theorem deals with the limit of the third type of alge-
braic function—one that involves a radical. See Appendix A for a proof of this theorem.

c.x

lim 
x→1

x2 & x & 2
x & 1

!
12 & 1 & 2

1 & 1
!

4
2

! 2.

x ! 1,

lim
x→1

 
x2 & x & 2

x & 1
.

lim
x→2

 p"x# ! p"2# ! 4"22# & 3 ! 19

x ! 2.pp"x# ! 4x2 & 3
x →  2

c.x

 ! 19

 ! 4"22# & 3

 ! 4& lim
x→2

 x2' & lim
x→2

 3

 lim
x→2

 "4x2 & 3# ! lim
x→2

 4x2 & lim
x→2

 3

THEOREM 1.3 Limits of Polynomial and Rational Functions

If is a polynomial function and is a real number, then

If is a rational function given by and is a real number such
that then

lim
x→c

 r"x# ! r"c# !
p"c#
q"c#.

q"c# % 0,
cr"x# ! p"x#(q"x#r

lim
x→c

 p"x# ! p"c#.

cp

THEOREM 1.4 The Limit of a Function Involving a Radical

Let be a positive integer. The following limit is valid for all if is odd, and
is valid for if is even.

lim
x→c

 n)x ! n)c

nc > 0
ncn

THE SQUARE ROOT SYMBOL

The first use of a symbol to denote the square
root can be traced to the sixteenth century.
Mathematicians first used the symbol 
which had only two strokes. This symbol was
chosen because it resembled a lowercase to
stand for the Latin word radix, meaning root.

r,

),
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Editable Graph
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The following theorem greatly expands your ability to evaluate limits because it
shows how to analyze the limit of a composite function. See Appendix A for a proof
of this theorem.

EXAMPLE 4 The Limit of a Composite Function

a. Because

and

it follows that

b. Because

and

it follows that

The editable graph feature allows you to edit the graph of a function to visually
evaluate the limit as approaches 

a. b.

You have seen that the limits of many algebraic functions can be evaluated by
direct substitution. The six basic trigonometric functions also exhibit this desirable
quality, as shown in the next theorem (presented without proof).

EXAMPLE 5 Limits of Trigonometric Functions

a.

b.

c. lim
x→0

 sin2 x ! lim
x→0

 "sin x#2 ! 02 ! 0 

lim
x→'

 "x cos x# ! & lim
x→'

 x'& lim
x→'

 cos x' ! ' cos"'# ! "'

lim
x→0

 tan x ! tan"0# ! 0

c.x

lim
x→3

  3)2x2 " 10 ! 3)8 ! 2.

lim
x→8

 3)x ! 2lim
x→3

 "2x2 " 10# ! 2"32# " 10 ! 8

lim
x→0

 )x2 & 4 ! )4 ! 2.

lim
x→4

 )x ! 2lim
x→0

 "x2 & 4# ! 02 & 4 ! 4

THEOREM 1.5 The Limit of a Composite Function

If and are functions such that and then

lim
x→c  f"g"x## ! f &lim

x→c
 g"x#' ! f "L#. 

lim
x→L

 f"x# ! f"L#,lim
x→c

 g"x# ! Lgf

THEOREM 1.6 Limits of Trigonometric Functions

Let be a real number in the domain of the given trigonometric function.

1. 2.

3. 4.

5. 6. lim
x→c

 csc x ! csc clim
x→c

 sec x ! sec c

lim
x→c

 cot x ! cot clim
x→c

 tan x ! tan c

lim
x→c

 cos x ! cos clim
x→c

 sin x ! sin c

c
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62 CHAPTER 1 Limits and Their Properties

A Strategy for Finding Limits
On the previous three pages, you studied several types of functions whose limits can
be evaluated by direct substitution. This knowledge, together with the following 
theorem, can be used to develop a strategy for finding limits. A proof of this theorem
is given in Appendix A.

EXAMPLE 6 Finding the Limit of a Function

Find the limit:

Solution Let By factoring and dividing out like factors,
you can rewrite as

So, for all values other than the functions and agree, as shown in Figure
1.17. Because exists, you can apply Theorem 1.7 to conclude that and 

have the same limit at 

Factor.

Divide out like factors.

Apply Theorem 1.7.

Use direct substitution.

Simplify. ! 3

 ! 12 & 1 & 1

 ! lim
x→1

"x2 & x & 1#

  ! lim 
x→1

"x " 1#"x2 & x & 1#
x " 1

 lim
x→1

 
x3 " 1
x " 1

! lim
x→1 

"x " 1#"x2 & x & 1#
x " 1

x ! 1.

gflim
x→1

 g"x#
gfx ! 1,x-

x % 1.f"x# !
"x " 1#"x2 & x & 1#

"x " 1# ! x2 & x & 1 ! g"x#,

f
f "x# ! "x3 " 1#("x " 1#.

lim
x→1

 
x3 " 1
x " 1

.

x
−2 −1 1

2

3

g (x) = x2 + x + 1

y

and agree at all but one point.

Figure 1.17

gf

x
−2 −1 1

2

3

y
f (x) = x3 − 1

x − 1

THEOREM 1.7 Functions That Agree at All But One Point

Let be a real number and let for all in an open interval
containing If the limit of as approaches exists, then the limit of 
also exists and

lim
x→c

 f"x# ! lim
x→c

 g"x#.

f"x#cxg"x#c.
x % cf"x# ! g"x#c

A Strategy for Finding Limits

1. Learn to recognize which limits can be evaluated by direct substitution.
(These limits are listed in Theorems 1.1 through 1.6.)

2. If the limit of as approaches cannot be evaluated by direct substitu-
tion, try to find a function that agrees with for all other than 
[Choose such that the limit of can be evaluated by direct substitution.]

3. Apply Theorem 1.7 to conclude analytically that

4. Use a graph or table to reinforce your conclusion.

lim
x→c

 f"x# ! lim
x→c

 g"x# ! g"c#.

g"x#g
x ! c.xfg

cxf"x#

STUDY TIP When applying this 
strategy for finding a limit, remember 
that some functions do not have a limit
(as approaches ). For instance, the
following limit does not exist.

lim
x→1

 
x3 & 1
x " 1

cx

Editable Graph

Editable Graph

Try It Exploration A Exploration B

Exploration C Exploration D
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Dividing Out and Rationalizing Techniques
Two techniques for finding limits analytically are shown in Examples 7 and 8. The
first technique involves dividing out common factors, and the second technique
involves rationalizing the numerator of a fractional expression.

EXAMPLE 7 Dividing Out Technique

Find the limit:

Solution Although you are taking the limit of a rational function, you cannot apply
Theorem 1.3 because the limit of the denominator is 0.

Direct substitution fails.

Because the limit of the numerator is also 0, the numerator and denominator have 
a common factor of So, for all you can divide out this factor 
to obtain 

Using Theorem 1.7, it follows that

Apply Theorem 1.7.

Use direct substitution.

This result is shown graphically in Figure 1.18. Note that the graph of the function 
coincides with the graph of the function except that the graph of has
a gap at the point 

In Example 7, direct substitution produced the meaningless fractional form 
An expression such as is called an indeterminate form because you cannot (from
the form alone) determine the limit. When you try to evaluate a limit and encounter
this form, remember that you must rewrite the fraction so that the new denominator
does not have 0 as its limit. One way to do this is to divide out like factors, as shown
in Example 7. A second way is to rationalize the numerator, as shown in Example 8.

0(0
0(0.

""3, "5#.
fg"x# ! x " 2,

f

 ! "5.

 lim
x→"3

x2 & x " 6
x & 3

! lim
x→"3

"x " 2#

x % "3.f"x# !
x2 & x " 6

x & 3
!

"x & 3#"x " 2#
x & 3

! x " 2 ! g"x#,

x % "3,"x & 3#.

lim
x→"3

"x & 3# ! 0

lim
x→"3

 
x2 & x " 6

x & 3

lim
x→"3

"x2 & x " 6# ! 0

lim
x→"3

 
x2 & x " 6

x & 3
.

− −3

− −5

−3 +

Glitch near

δδ

ε

(−3, −5)

−5 + ε

Incorrect graph of
Figure 1.19

f

NOTE In the solution of Example 7,
be sure you see the usefulness of the
Factor Theorem of Algebra. This
theorem states that if is a zero of a
polynomial function, is a factor
of the polynomial. So, if you apply
direct substitution to a rational function
and obtain

you can conclude that must be a
common factor to both and q"x#.p"x#

"x " c#

r "c# !
p"c#
q"c# !

0
0

"x " c#
c

21

−1

−1−2

−2

−4

−3

−5

x

(−3, −5)

f (x) = x2 + x − 6
x + 3

y

is undefined when 
Figure 1.18

x ! "3.f

TECHNOLOGY PITFALL Because the graphs of

and

differ only at the point a standard graphing utility setting may not dis-
tinguish clearly between these graphs. However, because of the pixel configuration
and rounding error of a graphing utility, it may be possible to find screen settings
that distinguish between the graphs. Specifically, by repeatedly zooming in near
the point on the graph of your graphing utility may show glitches or
irregularities that do not exist on the actual graph. (See Figure 1.19.) By changing
the screen settings on your graphing utility you may obtain the correct graph of f.

f,""3, "5#

""3, "5#,

g"x# ! x " 2f"x# !
x2 & x " 6

x & 3

Editable Graph

Try It Exploration A Open Exploration
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EXAMPLE 8 Rationalizing Technique

Find the limit:

Solution By direct substitution, you obtain the indeterminate form 

Direct substitution fails.

In this case, you can rewrite the fraction by rationalizing the numerator.

Now, using Theorem 1.7, you can evaluate the limit as shown.

A table or a graph can reinforce your conclusion that the limit is (See Figure 1.20.)

NOTE The rationalizing technique for evaluating limits is based on multiplication by a
convenient form of 1. In Example 8, the convenient form is

1 !
)x & 1 & 1
)x & 1 & 1

.

1
2.

 !
1
2

 !
1

1 & 1

 lim
x→0

 
)x & 1 " 1

x
! lim

x→0
 

1
)x & 1 & 1

 !
1

)x & 1 & 1
,      x % 0

 !
x

x")x & 1 & 1#

 !
"x & 1# " 1

x")x & 1 & 1#

 
)x & 1 " 1

x
! &)x & 1 " 1

x '&)x & 1 & 1
)x & 1 & 1'

lim
x→0

 x ! 0

lim
x→0

 
)x & 1 " 1

x

lim
x→0

 ")x & 1 " 1# ! 0

0(0.

lim
x→0

 
)x & 1 " 1

x
.

x
−1

−1

1

1
f (x) = x  + 1 − 1

x

y

The limit of as approaches 0 is 
Figure 1.20

1
2.xf "x#

approaches 0 from the left.x approaches 0 from the right.x

approaches 0.5.f "x# approaches 0.5.f "x#

0 0.001 0.01 0.1 0.25

0.5359 0.5132 0.5013 0.5001 ? 0.4999 0.4988 0.4881 0.4721f"x#

"0.001"0.01"0.1"0.25x

Editable Graph

Try It Exploration A Exploration B Exploration C
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The Squeeze Theorem
The next theorem concerns the limit of a function that is squeezed between two other
functions, each of which has the same limit at a given value, as shown in Figure
1.21. (The proof of this theorem is given in Appendix A.)

You can see the usefulness of the Squeeze Theorem in the proof of Theorem 1.9.

Proof To avoid the confusion of two different uses of the proof is presented using
the variable where is an acute positive angle measured in radians. Figure 1.22
shows a circular sector that is squeezed between two triangles. 

Area of triangle Area of sector Area of triangle

Multiplying each expression by produces

and taking reciprocals and reversing the inequalities yields

Because and you can conclude that
this inequality is valid for all nonzero in the open interval Finally,
because and you can apply the Squeeze Theorem to

conclude that The proof of the second limit is left as an exercise (see

Exercise 120).

lim
(→0

  "sin (#(( ! 1.

 lim
(→0

 1 ! 1,lim
(→0

 cos ( ! 1
""'(2, '(2#.(

"sin (#(( ! $sin""(#%(""(#,cos ( ! cos""(#

cos (  ≤  
sin (

(
  ≤  1.

1
cos (

≥
(

sin (
≥ 1

2(sin (

sin (
2

≥
(
2

≥
tan (

2

≥≥

((,
x,

x-

θ

θ

tan

1

θ

1

θ
θ

1

sin

FOR FURTHER INFORMATION
For more information on the function

see the article “The
Function ” by William B.
Gearhart and Harris S. Shultz in The
College Mathematics Journal. 

"sin x#(x
f "x# ! "sin x#(x,

y

x

g
g

f

h

c

f

h

f lies in here.

h (x) ≤ f (x) ≤ g (x)

The Squeeze Theorem
Figure 1.21

x

1

θ

θ
θ θ

(1, 0)

(1, tan   )

(cos   , sin   )

y

A circular sector is used to prove Theorem 1.9.
Figure 1.22

THEOREM 1.8 The Squeeze Theorem

If for all in an open interval containing except possibly
at itself, and if

then exists and is equal to L.lim
x→c

 f "x#

lim
x→c

 h"x# ! L ! lim
x→c

 g"x#

c
c,xh"x# ≤ f"x# ≤ g"x#

THEOREM 1.9 Two Special Trigonometric Limits

1. 2. lim
x→0

 
1 " cos x

x
! 0lim

x→0
 
sin x

x
! 1

Video

MathArticle
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EXAMPLE 9 A Limit Involving a Trigonometric Function

Find the limit:

Solution Direct substitution yields the indeterminate form To solve this
problem, you can write as and obtain

Now, because

and

you can obtain

(See Figure 1.23.)

EXAMPLE 10 A Limit Involving a Trigonometric Function

Find the limit:

Solution Direct substitution yields the indeterminate form To solve this
problem, you can rewrite the limit as

Multiply and divide by 4.

Now, by letting and observing that if and only if you can write

(See Figure 1.24.)

 ! 4.

 ! 4"1#

 ! 4&lim
y→0

 
sin y

y ' 

 lim
x→0

 
sin 4x

x
! 4&lim

x→0
 
sin 4x

4x ' 

y →  0,x →  0y ! 4x

lim
x→0

 
sin 4x

x
! 4& lim

x→0
 
sin 4x

4x '.

0(0.

lim
x→0

 
sin 4x

x
.

 ! 1.

 ! "1#"1#

 lim
x→0  

tan x
x

! &lim
x→0  

sin x
x '&lim

x→0  
1

cos x'

lim
x→0

 
1

cos x
! 1lim

x→0
 
sin x

x
! 1

lim
x→0

 
tan x

x
! lim

x→0
 &sin x

x '& 1
cos x'.

"sin x#("cos x#tan x
0(0.

lim
x→0

 
tan x

x
.

−

−2

4

'
2

'
2

f (x) = tan x
x

The limit of as approaches 0 is 1.
Figure 1.23

xf "x#

−2

6

− '
2

'
2

g (x) = sin 4x
x

The limit of as approaches 0 is 4.
Figure 1.24

xg"x#

TECHNOLOGY Use a graphing utility to confirm the limits in the examples
and exercise set. For instance, Figures 1.23 and 1.24 show the graphs of

and

Note that the first graph appears to contain the point and the second graph
appears to contain the point which lends support to the conclusions obtained
in Examples 9 and 10.

"0, 4#,
"0, 1#

g"x# !
sin 4x

x
. f"x# !

tan x
x

Editable Graph

Editable Graph

Try It Exploration A

Try It Exploration A



The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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E x e r c i s e s  f o r  S e c t i o n  1 . 3

In Exercises 1–4, use a graphing utility to graph the function
and visually estimate the limits.

1. 2.

(a) (a)

(b) (b)

3. 4.

(a) (a)

(b) (b)

In Exercises 5–22, find the limit.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–26, find the limits.

23.

(a) (b) (c)

24.

(a) (b) (c)

25.

(a) (b) (c)

26.

(a) (b) (c)

In Exercises 27– 36, find the limit of the trigonometric function.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–40, use the information to evaluate the limits.

37. 38.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

39. 40.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

In Exercises 41–44, use the graph to determine the limit visually
(if it exists). Write a simpler function that agrees with the given
function at all but one point.

41. 42.

(a) (a)

(b) (b)

43. 44.

(a) (a)

(b) (b) lim
x 0

 f !x"lim
x !1

 g!x"

lim
x 1

 f !x"lim
x 1

 g!x"

x

2

2

2 3

1

y

x
2 1 1

3

2

1

y

f !x" "
x

x2 ! x
g!x" "

x3 ! x
x ! 1

lim
x 0

 h!x"lim
x !1

 g!x"

lim
x !2

 h!x"lim
x 0

 g!x"

x
2

2

3

5

1 1 3

y

x
2 1 1

3

1

y

h!x" "
x 2 ! 3x

x
g!x" "

!2x2 # x
x

lim
x c

 # f !x"$ 2%3lim
x c

 # f !x"$3%2

lim
x c

 # f !x"$ 2lim
x c

 #3f !x"$

lim
x c

 
f !x"
18

lim
x c

 &f !x"

lim
x c

   3&f !x"lim
x c

 # f !x"$3

lim
x c

 f !x" " 27lim
x c

 f !x" " 4

lim
x c

 
f !x"
g!x"lim

x c
 
f !x"
g!x"

lim
x c

 # f !x"g!x"$lim
x c

 # f !x"g!x"$

lim
x c

 # f !x" # g!x"$lim
x c

 # f !x" # g!x"$

lim
x c

 #4f !x"$lim
x c

 #5g!x"$

lim
x c

 g!x" " 1
2lim

x c
 g!x" " 3

lim
x c

 f !x" " 3
2lim

x c
 f !x" " 2

lim
x 7

 sec'$x
6 (lim

x 3
 tan'$x

4 (

lim
x 5$%3

 cos xlim
x 5$%6

 sin x

lim
x $

 cos 3xlim
x 0

 sec 2x

lim
x 1

  sin 
$x
2

lim
x 2

 cos 
$x
3

lim
x $

 tan xlim
x $%2

 sin x

lim
x 4

 g! f !x""lim
x 21

 g!x"lim
x 4

  f !x"
f !x" " 2x2 ! 3x # 1, g!x" " 3&x # 6

lim
x 1

 g! f !x""lim
x 3

 g!x"lim
x 1

  f !x"
f !x" " 4 ! x2, g!x" " &x # 1

lim
x !3

 g! f !x""lim
x 4

 g!x"lim
x !3

  f !x"
f !x" " x # 7, g!x" " x2

lim
x 1

 g! f !x""lim
x 4

 g!x"lim
x 1

  f !x"
f !x" " 5 ! x, g!x" " x3

lim
x 0

  !2x ! 1"3lim
x !4

 !x # 3"2

lim
x 4

  3&x # 4lim
x 3

 &x # 1

lim
x 3

  
&x # 1
x ! 4

lim
x 7

  
5x

&x # 2

lim
x 3

  
2x ! 3
x # 5

lim
x 1

  
x ! 3
x2 # 4

lim
x !3

  
2

x # 2
lim
x 2

 
1
x

lim
x 1

 !3x3 ! 2x2 # 4"lim
x !3

 !2x2 # 4x # 1"

lim
x 1

 !!x2 # 1"lim
x !3

 !x2 # 3x"

lim
x !3

 !3x # 2"lim
x 0

 !2x ! 1"

lim
x !2

 x3lim
x 2

 x4

lim
t !1

 f !t"lim
x $%3

 f !x"

lim
t 4

 f !t"lim
x 0

 f !x"

f !t" " t)t ! 4)f !x" " x cos x

lim
x 0

 g!x"lim
x !1

 h!x"

lim
x 4

 g!x"lim
x 5

 h!x"

g!x" "
12!&x ! 3"

x ! 9
h!x" " x2 ! 5x
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In Exercises 45–48, find the limit of the function (if it exists).
Write a simpler function that agrees with the given function at
all but one point. Use a graphing utility to confirm your result.

45. 46.

47. 48.

In Exercises 49–62, find the limit (if it exists).

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61.

62.

Graphical, Numerical, and Analytic Analysis In Exercises
63–66, use a graphing utility to graph the function and estimate
the limit. Use a table to reinforce your conclusion. Then find the
limit by analytic methods.

63. 64.

65. 66.

In Exercises 67–78, determine the limit of the trigonometric
function (if it exists).

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77.

78.

Graphical, Numerical, and Analytic Analysis In Exercises
79–82, use a graphing utility to graph the function and estimate
the limit. Use a table to reinforce your conclusion. Then find the
limit by analytic methods.

79. 80.

81. 82.

In Exercises 83–86, find 

83. 84.

85. 86.

In Exercises 87 and 88, use the Squeeze Theorem to find

87.

88.

In Exercises 89–94, use a graphing utility to graph the given
function and the equations and in the same
viewing window. Using the graphs to observe the Squeeze
Theorem visually, find 

89. 90.

91. 92.

93. 94.

99. Writing Use a graphing utility to graph

in the same viewing window. Compare the magnitudes of 
and when is close to 0. Use the comparison to write a
short paragraph explaining why

lim
x 0

 h!x" " 1.

xg!x"
f !x"

 f !x" " x,    g!x" " sin x,    and    h!x" "
sin x

x

h!x" " x cos 
1
x

f !x" " x sin 
1
x

f !x" " )x) cos xf !x" " )x) sin x

f !x" " )x sin x)f !x" " x cos x

lim
x 0

 f *x+.

y ! ")x)y ! )x)

b ! )x ! a) f !x" b # )x ! a)
c " a

4 ! x2 f !x" 4 # x2

c " 0

lim
x c

 f *x+.

f !x" " x2 ! 4xf !x" "
4
x

f !x" " &xf !x" " 2x # 3

lim
#x 0

 
f *x $ #x+ " f *x+

#x
.

lim
x 0

 
sin x
3&x

lim
x 0

 
sin x2

x

lim
x 0

 
cos x ! 1

2x2lim
t 0

 
sin 3t

t

,Hint: Find lim
x 0'

2 sin 2x
2x (' 3x

3 sin 3x( .-lim
x 0

 
sin 2x
sin 3x

lim
t 0

 
sin 3t

2t

lim
x $%4

 
1 ! tan x

sin x ! cos x
lim

x $%2
 
cos x
cot x

lim
% $

 % sec %lim
h 0

 
!1 ! cos h"2

h

lim
x 0

 
tan2 x

x
lim
x 0

 
sin2 x

x

lim
& 0

 
cos & tan &

&
lim
x 0

 
sin x!1 ! cos x"

2x2

lim
x 0

 
3!1 ! cos x"

x
lim
x 0

 
sin x
5x

lim
x 2

 
x5 ! 32
x ! 2

lim
x 0

 
#1%!2 # x"$ ! !1%2"

x

lim
x 16

 
4 ! &x
x ! 16

lim
x 0

 
&x # 2 ! &2

x

lim
'x 0

 
!x # 'x"3 ! x3

'x

lim
'x 0

 
!x # 'x"2 ! 2!x # 'x" # 1 ! !x2 ! 2x # 1"

'x

lim
'x 0

 
!x # 'x"2 ! x 2

'x
lim

'x 0
 
2!x # 'x" ! 2x

'x

lim
x 0

 
#1%!x # 4"$ ! !1%4"

x
lim
x 0

 
#1%!3 # x"$ ! !1%3"

x

lim
x 3

 
&x # 1 ! 2

x ! 3
lim
x 4

 
&x # 5 ! 3

x ! 4

lim
x 0

 
&2 # x ! &2

x
lim
x 0

 
&x # 5 ! &5

x

lim
x 4

 
x2 ! 5x # 4
x2 ! 2x ! 8

lim
x !3

 
x2 # x ! 6

x2 ! 9

lim
x 2

 
2 ! x
x2 ! 4

lim
x 5

 
x ! 5

x2 ! 25

lim
x !1

 
x3 # 1
x # 1

lim
x 2

 
x 3 ! 8
x ! 2

lim
x !1

 
2x2 ! x ! 3

x # 1
lim

x !1
 
x 2 ! 1
x # 1

Writing About Concepts
95. In the context of finding limits, discuss what is meant by

two functions that agree at all but one point.

96. Give an example of two functions that agree at all but one
point.

97. What is meant by an indeterminate form?

98. In your own words, explain the Squeeze Theorem.
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100. Writing Use a graphing utility to graph

in the same viewing window. Compare the magnitudes of 
and when is close to 0. Use the comparison to write a
short paragraph explaining why

Free-Falling Object In Exercises 101 and 102, use the position
function which gives the height (in feet) of
an object that has fallen for seconds from a height of 1000 feet.
The velocity at time seconds is given by

101. If a construction worker drops a wrench from a height of 1000
feet, how fast will the wrench be falling after 5 seconds?

102. If a construction worker drops a wrench from a height of 1000
feet, when will the wrench hit the ground? At what velocity
will the wrench impact the ground?

Free-Falling Object In Exercises 103 and 104, use the position
function which gives the height (in meters)
of an object that has fallen from a height of 150 meters. The
velocity at time seconds is given by

103. Find the velocity of the object when 

104. At what velocity will the object impact the ground?

105. Find two functions and such that and do

not exist, but does exist.

106. Prove that if exists and does not

exist, then does not exist.

107. Prove Property 1 of Theorem 1.1.

108. Prove Property 3 of Theorem 1.1. (You may use Property 3 of
Theorem 1.2.)

109. Prove Property 1 of Theorem 1.2.

110. Prove that if then 

111. Prove that if and for a fixed number

and all then 

112. (a) Prove that if then 

(Note: This is the converse of Exercise 110.)

(b) Prove that if then 

Hint: Use the inequality 

True or False? In Exercises 113–118, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

113.

114.

115. If for all real numbers other than and

then

116. If then 

117. where 

118. If for all then

119. Think About It Find a function to show that the converse
of Exercise 112(b) is not true. [Hint: Find a function such
that but does not exist.]

120. Prove the second part of Theorem 1.9 by proving that

121. Let 

and

Find (if possible) and 

122. Graphical Reasoning Consider 

(a) Find the domain of 

(b) Use a graphing utility to graph Is the domain of 
obvious from the graph? If not, explain.

(c) Use the graph of to approximate 

(d) Confirm the answer in part (c) analytically.

123. Approximation

(a) Find 

(b) Use the result in part (a) to derive the approximation
for near 0.

(c) Use the result in part (b) to approximate 

(d) Use a calculator to approximate to four decimal
places. Compare the result with part (c).

124. Think About It When using a graphing utility to generate a
table to approximate a student concluded that 

the limit was 0.01745 rather than 1. Determine the probable
cause of the error.

lim
x 0

#!sin x"%x$,

cos!0.1"
cos!0.1".

xcos x . 1 ! 1
2x2

lim
x 0

 
1 ! cos x

x2 .

lim
x 0

 f !x".f

ff.

f.

f !x" "
sec x ! 1

x2 .

lim
x 0

 g!x".lim
x 0

 f !x"

g!x" " /0,     
x,

if x is rational
if x is irrational.

f !x" " /0,     
1,

if x is rational
if x is irrational

lim
x 0

 
1 ! cos x

x
" 0.

lim
x c

 f !x"lim
x c

 ) f !x") " )L)
f

f

lim
x a

 f !x" < lim
x a

 g!x".

x ( a,f !x" < g!x"

f !x" " /3,
0,

     x 2
     x > 2

 lim
x 2

 f !x" " 3,

f !c" " L.lim
x c

 f !x" " L,

lim
x 0

 g!x" " L.lim
x 0

 f !x" " L,

x " 0,f !x" " g!x"

lim
x $

 
sin x

x
" 1

lim
x 0

 )x)
x

" 1

0 f !x") ! )L0 ) f !x" ! L).$#
lim
x c

 ) f !x") " )L).lim
x c

 f !x" " L,

lim
x c

 f !x" " 0.lim
x c

 ) f !x") " 0,

lim
x c

 f !x"g!x" " 0.x ( c,M

)g!x") Mlim
x c

 f !x" " 0

lim
x c

 ) f !x") " 0.lim
x c

 f !x" " 0,

lim
x c

 g!x"

lim
x c

 # f !x" # g!x"$lim
x c

 f !x"

lim
x 0

 # f !x" # g!x"$

lim
x 0

 g!x"lim
x 0

 f !x"gf

t " 3.

lim
t a

 
s*a+ " s*t+

a " t
.

t ! a

s*t+ ! "4.9t2 $ 150,

lim
t a

 
s*a+ " s*t+

a " t
.

t ! a
t

s*t+ ! "16t2 $ 1000,

lim
x 0

 h!x" " 0.

xg!x"
f !x"

 f !x" " x,  g!x" " sin2 x,  and h!x" "
sin2 x

x
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Section 1.4 Continuity and One-Sided Limits
• Determine continuity at a point and continuity on an open interval.
• Determine one-sided limits and continuity on a closed interval.
• Use properties of continuity.
• Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval
In mathematics, the term continuous has much the same meaning as it has in everyday
usage. Informally, to say that a function is continuous at means that there is
no interruption in the graph of at That is, its graph is unbroken at and there
are no holes, jumps, or gaps. Figure 1.25 identifies three values of at which the graph
of is not continuous. At all other points in the interval the graph of is
uninterrupted and continuous.

In Figure 1.25, it appears that continuity at can be destroyed by any one of
the following conditions.

1. The function is not defined at 

2. The limit of does not exist at 

3. The limit of exists at but it is not equal to 

If none of the above three conditions is true, the function is called continuous at 
as indicated in the following important definition.

c,f

f!c".x ! c,f !x"
x ! c.f !x"

x ! c.

x ! c

f!a, b",f
x

cc.f
x ! cf

FOR FURTHER INFORMATION For
more information on the concept of
continuity, see the article “Leibniz and
the Spell of the Continuous” by Hardy
Grant in The College Mathematics
Journal.

x

a bc

f (c) is
not defined.

y

x

a bc

lim f (x)
x→c
does not exist.

y

x

a bc

x→c
lim f (x) ≠ f (c)

y

Three conditions exist for which the graph of is not continuous at 
Figure 1.25

x ! c.f

Definition of Continuity

Continuity at a Point: A function is continuous at if the following three
conditions are met.

1. is defined.

2. exists.

3.

Continuity on an Open Interval: A function is continuous on an open interval
if it is continuous at each point in the interval. A function that is continuous

on the entire real line is everywhere continuous.!"#, #"
#a, b$

lim
x→c

 f !x" ! f !c".

lim
x→c

 f !x"
f!c"

cf

E X P L O R A T I O N

Informally, you might say that a
function is continuous on an open
interval if its graph can be drawn
with a pencil without lifting the
pencil from the paper. Use a graphing
utility to graph each function on the
given interval. From the graphs,
which functions would you say are
continuous on the interval? Do you
think you can trust the results you
obtained graphically? Explain your
reasoning.

a.

b.

c.

d.

e. !"3, 3"y ! %2x " 4,

x $ 1,
   

x ≤ 0

x > 0

!"3, 3"y !
x2 " 4
x $ 2

!"%, %"y !
sin x

x

!"3, 3"y !
1

x " 2

!"3, 3"y ! x2 $ 1

Interval Function                          

Animation

MathArticle

Video
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Consider an open interval that contains a real number If a function is
defined on (except possibly at ), and is not continuous at then is said to have
a discontinuity at Discontinuities fall into two categories: removable and 
nonremovable. A discontinuity at is called removable if can be made continuous
by appropriately defining (or redefining) For instance, the functions shown in
Figure 1.26(a) and (c) have removable discontinuities at and the function shown in
Figure 1.26(b) has a nonremovable discontinuity at 

EXAMPLE 1 Continuity of a Function

Discuss the continuity of each function.

a. b. c. d.

Solution

a. The domain of is all nonzero real numbers. From Theorem 1.3, you can conclude
that is continuous at every -value in its domain. At has a nonremovable
discontinuity, as shown in Figure 1.27(a). In other words, there is no way to define

so as to make the function continuous at 

b. The domain of is all real numbers except From Theorem 1.3, you can
conclude that is continuous at every -value in its domain. At the function
has a removable discontinuity, as shown in Figure 1.27(b). If is defined as 2,
the “newly defined” function is continuous for all real numbers.

c. The domain of is all real numbers. The function is continuous on and
and, because is continuous on the entire real line, as shown

in Figure 1.27(c).

d. The domain of is all real numbers. From Theorem 1.6, you can conclude that the
function is continuous on its entire domain, as shown in Figure 1.27(d).!"#, #",

y

hlim
x→0

 h!x" ! 1,!0, #",
!"#, 0"hh

g!1"
x ! 1,xg

x ! 1.g

x ! 0.f!0"

fx ! 0,xf
f

y ! sin xh!x" ! %x $ 1,

x2 $ 1,
   

x ≤ 0

x > 0
g!x" !

x2 " 1
x " 1

f!x" !
1
x

c.
c

f!c".
fc

c.
fc,fcI

fc.I

x

a bc

y

(a) Removable discontinuity

x

a bc

y

(b) Nonremovable discontinuity

x

a bc

y

(c) Removable discontinuity
Figure 1.26

STUDY TIP Some people may refer to
the function in Example 1(a) as “discon-
tinuous.” We have found that this termi-
nology can be confusing. Rather than
saying the function is discontinuous, we
prefer to say that it has a discontinuity 
at x ! 0.

x

1

1

2

2

3

3

−1

−1

f (x) = 
1
x

y

x

1

1

2

2

3

3

(1, 2)

−1

−1

g (x) = x
2 − 1

x  − 1

y

x

1

1

2

2

3

3

−1

−1

h (x) = 
x + 1,

x2 + 1, x > 0

y

x ≤ 0

1

−1

x
π π
2 2

3

y = sin x

y

(a) Nonremovable discontinuity at x ! 0

(c) Continuous on entire real line

Figure 1.27

(d) Continuous on entire real line

(b) Removable discontinuity at x ! 1

Editable Graph

Editable Graph Editable Graph

Editable Graph
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One-Sided Limits and Continuity on a Closed Interval
To understand continuity on a closed interval, you first need to look at a different type
of limit called a one-sided limit. For example, the limit from the right means that 
approaches from values greater than [see Figure 1.28(a)]. This limit is denoted as

Limit from the right

Similarly, the limit from the left means that approaches from values less than 
[see Figure 1.28(b)]. This limit is denoted as

Limit from the left

One-sided limits are useful in taking limits of functions involving radicals. For
instance, if is an even integer,

EXAMPLE 2 A One-Sided Limit

Find the limit of as approaches from the right.

Solution As shown in Figure 1.29, the limit as approaches from the right is

One-sided limits can be used to investigate the behavior of step functions. One
common type of step function is the greatest integer function defined by

Greatest integer function

For instance, and 

EXAMPLE 3 The Greatest Integer Function

Find the limit of the greatest integer function as approaches 0 from the
left and from the right.

Solution As shown in Figure 1.30, the limit as approaches 0 from the left is given by

and the limit as approaches 0 from the right is given by

The greatest integer function has a discontinuity at zero because the left and right lim-
its at zero are different. By similar reasoning, you can see that the greatest integer 
function has a discontinuity at any integer n.

lim
x→0$

 &x' ! 0.

x

lim
x→0"

 &x' ! "1

x

xf!x" ! &x'

&"2.5' ! "3.&2.5' ! 2

&x',

lim
x→"2$

 (4 " x2 ! 0.

"2x

"2xf!x" ! (4 " x2

n

ccx

cc
x

x
1

1

2

2

3−1−2

−2

x[[ ]]f (x) =y

Greatest integer function
Figure 1.30

x
1

1

2

3

−1−2

−1

f (x) =     4 − x2

y

The limit of as approaches from
the right is 0.
Figure 1.29

"2xf!x"

x

y

x approaches
c from the right.

c < x

(a) Limit from right

x

y

x approaches
c from the left.

c > x

(b) Limit from left
Figure 1.28

lim
x→c$

 f!x" ! L.

lim
x→c"

 f!x" ! L.

lim
x→0$

 n(x ! 0.

greatest integer such that n ≤ x.n&x' !

Try It Exploration A

Try It Exploration A Exploration B

Editable Graph

Editable Graph
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When the limit from the left is not equal to the limit from the right, the (two-
sided) limit does not exist. The next theorem makes this more explicit. The proof of
this theorem follows directly from the definition of a one-sided limit.

The concept of a one-sided limit allows you to extend the definition of continuity
to closed intervals. Basically, a function is continuous on a closed interval if it is
continuous in the interior of the interval and exhibits one-sided continuity at the 
endpoints. This is stated formally as follows.

Similar definitions can be made to cover continuity on intervals of the form 
and that are neither open nor closed, or on infinite intervals. For example, the
function

is continuous on the infinite interval and the function

is continuous on the infinite interval 

EXAMPLE 4 Continuity on a Closed Interval

Discuss the continuity of 

Solution The domain of is the closed interval At all points in the open
interval the continuity of follows from Theorems 1.4 and 1.5. Moreover,
because

Continuous from the right

and

Continuous from the left

you can conclude that is continuous on the closed interval as shown in
Figure 1.32.

)"1, 1*,f

lim
x→1"

 (1 " x2 ! 0 ! f!1"

lim
x→"1$

 (1 " x2 ! 0 ! f!"1"

f!"1, 1",
)"1, 1*.f

f!x" ! (1 " x2.

!"#, 2*.

g!x" ! (2 " x

)0, #",

f!x" ! (x

)a, b"
!a, b*

x

a b

y

Continuous function on a closed interval
Figure 1.31

x

1

1−1

f (x) =     1 − x2

y

is continuous on 
Figure 1.32

)"1, 1*.f

THEOREM 1.10 The Existence of a Limit

Let be a function and let and be real numbers. The limit of as 
approaches is if and only if

and lim
x→c$

 f!x" ! L.lim
x→c"

 f!x" ! L

Lc
xf!x"Lcf

Definition of Continuity on a Closed Interval

A function is continuous on the closed interval if it is continuous on
the open interval and

and

The function is continuous from the right at and continuous from the
left at (see Figure 1.31).b

af

lim
x→b"

 f!x" ! f!b".lim
x→a$

 f!x" ! f!a"
!a, b"

[a, b]f
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The next example shows how a one-sided limit can be used to determine the value
of absolute zero on the Kelvin scale.

EXAMPLE 5 Charles’s Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures of
approximately 0.0001 K have been produced in laboratories, absolute zero has never
been attained. In fact, evidence suggests that absolute zero cannot be attained. How
did scientists determine that 0 K is the “lower limit” of the temperature of matter?
What is absolute zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French
physicist Jacques Charles (1746–1823). Charles discovered that the volume of gas at
a constant pressure increases linearly with the temperature of the gas. The table
illustrates this relationship between volume and temperature. In the table, one mole of
hydrogen is held at a constant pressure of one atmosphere. The volume is measured
in liters and the temperature is measured in degrees Celsius.

The points represented by the table are shown in Figure 1.33. Moreover, by using the
points in the table, you can determine that and are related by the linear equation

or

By reasoning that the volume of the gas can approach 0 (but never equal or go below
0) you can determine that the “least possible temperature” is given by

Use direct substitution.

So, absolute zero on the Kelvin scale 0 K is approximately on the Celsius
scale.

The following table shows the temperatures in Example 5, converted to the
Fahrenheit scale. Try repeating the solution shown in Example 5 using these temperatures
and volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

NOTE Charles’s Law for gases (assuming constant pressure) can be stated as

Charles’s Law

where is volume, is constant, and is temperature. In the statement of this law, what
property must the temperature scale have?

TRV

V ! RT

"273.15&"!

 + "273.15.

 !
0 " 22.4334

0.08213

lim
V→0$

T ! lim
V→0$

 
V " 22.4334

0.08213

T !
V " 22.4334

0.08213
.V ! 0.08213T $ 22.4334

VT

T
V

T
−100−200−300

5

10

15

25

30

100

V = 0.08213T + 22.4334

(−273.15, 0)

V

The volume of hydrogen gas depends on 
its temperature.
Figure 1.33

T 0 20 40 60 80

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

"20"40

T 32 68 104 140 176

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

"4"40In 1995, physicists Carl Wieman and 
Eric Cornell of the University of
Colorado at Boulder used lasers and
evaporation to produce a supercold gas 
in which atoms overlap. This gas is called 
a Bose-Einstein condensate. “We get to
within a billionth of a degree of absolute
zero,”reported Wieman. (Source: Time
magazine, April 10, 2000)
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Properties of Continuity
In Section 1.3, you studied several properties of limits. Each of those properties yields
a corresponding property pertaining to the continuity of a function. For instance,
Theorem 1.11 follows directly from Theorem 1.2.

The following types of functions are continuous at every point in their domains.

1. Polynomial functions:

2. Rational functions:

3. Radical functions:

4. Trigonometric functions: sin cos tan cot sec csc

By combining Theorem 1.11 with this summary, you can conclude that a wide
variety of elementary functions are continuous at every point in their domains.

EXAMPLE 6 Applying Properties of Continuity

By Theorem 1.11, it follows that each of the following functions is continuous at every
point in its domain.

The next theorem, which is a consequence of Theorem 1.5, allows you to determine
the continuity of composite functions such as

One consequence of Theorem 1.12 is that if and satisfy the given conditions,
you can determine the limit of as approaches to be

lim
x→c

 f !g!x"" ! f !g!c"".

cxf !g!x""
gf

f!x" ! tan 
1
x
.f!x" ! (x2 $ 1,f!x" ! sin 3x,

f!x" !
x2 $ 1
cos x

f!x" ! 3 tan x,f!x" ! x $ sin x,

xx,x,x,x,x,

f!x" ! n(x

q!x" ' 0r!x" !
p!x"
q!x",

p!x" ! anxn $ an"1xn"1 $ .  .  . $ a1x $ a0

AUGUSTIN-LOUIS CAUCHY (1789–1857)

The concept of a continuous function was
first introduced by Augustin-Louis Cauchy in
1821. The definition given in his text Cours
d’Analyse stated that indefinite small changes
in were the result of indefinite small changes
in “… will be called a continuous
function if … the numerical values of the
difference decrease
indefinitely with those of ….”(

f !x $ (" " f !x"

f !x"x.
y

THEOREM 1.11 Properties of Continuity

If is a real number and and are continuous at then the following
functions are also continuous at 

1. Scalar multiple:

2. Sum and difference:

3. Product:

4. Quotient: if g!c" ' 0
f
g

,

fg

f ± g

bf

c.
x ! c,gfb

THEOREM 1.12 Continuity of a Composite Function

If is continuous at and is continuous at then the composite function
given by is continuous at c.! f & g"!x" ! f!g!x""

g!c",fcg

MathBio
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EXAMPLE 7 Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. b. c.

Solution

a. The tangent function is undefined at

is an integer.

At all other points it is continuous. So, is continuous on the open
intervals

as shown in Figure 1.34(a).

b. Because is continuous except at and the sine function is continuous
for all real values of it follows that is continuous at all real values
except At the limit of does not exist (see Example 5, Section
1.2). So, is continuous on the intervals and as shown in Figure
1.34(b).

c. This function is similar to that in part (b) except that the oscillations are damped
by the factor Using the Squeeze Theorem, you obtain

and you can conclude that

So, is continuous on the entire real line, as shown in Figure 1.34(c).h

lim
x→0

 h!x" ! 0.

x ' 0",x, ≤ x sin 
1
x

≤ ,x,,
x.

!0, #",!"#, 0"g
g!x"x ! 0,x ! 0.
y ! sin !1-x"x,

x ! 0y ! 1-x

.  .  . , ."
3%
2

, "
%
2/, ."

%
2

, 
%
2/, .%

2
, 

3%
2 /, .  .  .

f!x" ! tan x

nx !
%
2

$ n%,

f!x" ! tan x

h!x" ! %x sin 1
        x

,

0,
    

x ' 0

x ! 0
g!x" ! %sin

 1
     x

,

0,
    x ' 0

x ! 0
f!x" ! tan x

x

4

3

2

1

−3

−4

−π π

f (x) = tan x

y

x

1

−1

−1 1

g (x) = sin   , x ≠ 0

0,

1
x

y

x = 0

x

1

−1

−1 1

h (x) = 
x = 00,

y =  x 

y = − 
x sin   , x ≠ 01

x

y

x
(a) is continuous on each open interval in its 

domain.

Figure 1.34

f

(b) is continuous on and !0, #".!"#, 0"g (c) is continuous on the entire real line.h
Editable Graph

Editable Graph Editable Graph
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The Intermediate Value Theorem
Theorem 1.13 is an important theorem concerning the behavior of functions that are
continuous on a closed interval.

NOTE The Intermediate Value Theorem tells you that at least one exists, but it does not give
a method for finding Such theorems are called existence theorems.

By referring to a text on advanced calculus, you will find that a proof of this
theorem is based on a property of real numbers called completeness. The Intermediate
Value Theorem states that for a continuous function if takes on all values between

and must take on all values between and 
As a simple example of this theorem, consider a person’s height. Suppose that a

girl is 5 feet tall on her thirteenth birthday and 5 feet 7 inches tall on her fourteenth
birthday. Then, for any height between 5 feet and 5 feet 7 inches, there must have
been a time when her height was exactly This seems reasonable because human
growth is continuous and a person’s height does not abruptly change from one value
to another.

The Intermediate Value Theorem guarantees the existence of at least one number
in the closed interval There may, of course, be more than one number such

that as shown in Figure 1.35. A function that is not continuous does not
necessarily exhibit the intermediate value property. For example, the graph of the
function shown in Figure 1.36 jumps over the horizontal line given by and for
this function there is no value of in such that 

The Intermediate Value Theorem often can be used to locate the zeros of a
function that is continuous on a closed interval. Specifically, if is continuous on

and and differ in sign, the Intermediate Value Theorem guarantees the
existence of at least one zero of in the closed interval )a, b*.f

f!b"f!a")a, b*
f

f!c" ! k.)a, b*c
y ! k,

f!c" ! k,
c)a, b*.c

h.t
h

f!b".f!a"f!x"b,a
xf,

c.
c

x

k

b
c3c2a

c1

f (a)

f (b)

y

is continuous on 
[There exist three ’s such that ]
Figure 1.35

f!c" ! k.c
)a, b*.f

x

b

k

a

f (a)

f (b)

y

is not continuous on 
[There are no ’s such that ]
Figure 1.36

f!c" ! k.c
)a, b*.f

THEOREM 1.13 Intermediate Value Theorem

If is continuous on the closed interval and is any number between
and then there is at least one number in such that

f!c" ! k.

)a, b*cf!b),f!a"
k)a, b*f

Video
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EXAMPLE 8 An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function
has a zero in the interval 

Solution Note that is continuous on the closed interval Because

and

it follows that and You can therefore apply the Intermediate Value
Theorem to conclude that there must be some in such that

has a zero in the closed interval 

as shown in Figure 1.37.

The bisection method for approximating the real zeros of a continuous function
is similar to the method used in Example 8. If you know that a zero exists in the closed
interval the zero must lie in the interval or From
the sign of you can determine which interval contains the zero. By
repeatedly bisecting the interval, you can “close in” on the zero of the function.

f !)a $ b*-2",
)!a $ b"-2, b*.)a, !a $ b"-2*)a, b*,

)0, 1*.ff!c" ! 0

)0, 1*c
f!1"  >  0.f!0"  <  0

f!1" ! 13 $ 2!1" " 1 ! 2f!0" ! 03 $ 2!0" " 1 ! "1

)0, 1*.f

)0, 1*.f!x" ! x3 $ 2x " 1

x

1

1

2

−1

−1
(c, 0)

(1, 2)

(0, −1)

y f (x) = x3 + 2x − 1

is continuous on with and

Figure 1.37
f !1" > 0.

f !0" < 0)0, 1*f

−0.2

−0.2

1

0.2

0.4

−0.012

0.5

0.013

Figure 1.38 Zooming in on the zero of f !x" ! x3 $ 2x " 1

TECHNOLOGY You can also use the zoom feature of a graphing utility to
approximate the real zeros of a continuous function. By repeatedly zooming in on
the point where the graph crosses the -axis, and adjusting the -axis scale, you can
approximate the zero of the function to any desired accuracy. The zero of

is approximately 0.453, as shown in Figure 1.38.x3 $ 2x " 1

xx
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The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.

E x e r c i s e s  f o r  S e c t i o n  1 . 4

78 CHAPTER 1 Limits and Their Properties

In Exercises 1–6, use the graph to determine the limit, and
discuss the continuity of the function.

(a) (b) (c)

1. 2.

3. 4.

5. 6.

x
1

2

3

4
c = 1

( 1, 2)

( 1, 0)3

y

x
1

1

2

2

3

3 4 5 61

3

(4, 2)

(4, 2)

c = 4

y

x

1

2

3

4

1234

c = 2

( 2, 3)

( 2, 2)

y

x
62

4

4
2

c = 3

(3, 1)

(3, 0)

y

x

1

2

1

2

2

c = 2

( 2, 2)

y

x

1

1

2

2

2

3 4

c = 3

(3, 1)

y

lim
x c

 f !x"lim
x c!

 f !x"lim
x c"

 f !x"
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In Exercises 7–24, find the limit (if it exists). If it does not exist,
explain why.

7.

8.

9.

10.

11.

12.

13.

14.

15. where 

16. where 

17. where 

18. where 

19.

20.

21.

22.

23.

24.

In Exercises 25–28, discuss the continuity of each function.

25. 26.

27. 28.

In Exercises 29–32, discuss the continuity of the function on the
closed interval.

29.

30.

31.

32.

In Exercises 33–54, find the -values (if any) at which is not
continuous. Which of the discontinuities are removable?

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46. f #x$ ! %"2x # 3,
x2,

x < 1
x 1

f #x$ ! %x,
x2,

x 1
x > 1

f #x$ ! &x " 3&
x " 3

f #x$ ! &x # 2&
x # 2

f #x$ !
x " 1

x2 # x " 2

f #x$ !
x # 2

x2 " 3x " 10

f #x$ !
x " 3
x2 " 9

f #x$ !
x

x2 # 1

f #x$ !
x

x2 " 1

f #x$ !
x

x2 " x

f #x$ ! cos 
$x
2

f #x$ ! 3x " cos x

f #x$ !
1

x2 # 1

f #x$ ! x2 " 2x # 1

fx

'"1, 2(g#x$ !
1

x2 " 4

'"1, 4(f #x$ ! %3 " x,

3 # 1
2 x,

   
x 0

x > 0

'"3, 3(f #t$ ! 3 " )9 " t2

'"5, 5(g#x$ ! )25 " x2

IntervalFunction                         

x

2

2

3

3

1

1

2

2

3

3

y

x
12

3

3

1

1

2

2

3

3

y

f #x$ ! %x,
2,
2x " 1,

   x < 1
   x ! 1
   x > 1

f #x$ ! 1
2*x+ # x

x
12

3

3

1

1

2

2

3

3

y

x

1

2
3

3

1

1

2

3

3

y

f #x$ !
x2 " 1
x # 1

f #x$ !
1

x2 " 4

lim
x 1,1 " -"

x
2./

lim
x 3

 #2 " *"x+ $

lim
x 2#

#2x " *x+$

lim
x 4"

#3*x+ " 5$

lim
x $02

 sec x

lim
x $

 cot x

f #x$ ! %x,            x 1
1 " x,     x > 1

lim
x 1#

 f #x$,

f #x$ ! %x3 # 1,    x < 1
x # 1,     x 1

lim
x 1

 f #x$,

f #x$ ! %x2 " 4x # 6,       x < 2
"x2 # 4x " 2,   x 2

lim
x 2

 f #x$,

f #x$ ! %
x # 2

2
,       x 3

12 " 2x
3

,   x > 3
 lim

x 3"
 f #x$,

lim
%x 0#

 
#x # %x$2 # x # %x " #x2 # x$

%x

lim
%x 0"

 

1
x # %x

"
1
x

%x

lim
x 2#

 &x " 2&
x " 2

lim
x 0"

 &x&
x

lim
x 4"

 
)x " 2
x " 4

lim
x "3"

 
x

)x2 " 9

lim
x 2#

 
2 " x
x2 " 4

lim
x 5#

 
x " 5

x2 " 25
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47.

48.

49.

50.

51.

52.

53.

54.

In Exercises 55 and 56, use a graphing utility to graph the
function. From the graph, estimate

and

Is the function continuous on the entire real line? Explain.

55.

56.

In Exercises 57–60, find the constant or the constants and
such that the function is continuous on the entire real line.

57.

58.

59.

60.

In Exercises 61– 64, discuss the continuity of the composite
function 

61. 62.

63. 64.

In Exercises 65–68, use a graphing utility to graph the function.
Use the graph to determine any -values at which the function
is not continuous.

65. 66.

67.

68.

In Exercises 69–72, describe the interval(s) on which the
function is continuous.

69. 70.

71. 72.

Writing In Exercises 73 and 74, use a graphing utility to graph
the function on the interval Does the graph of the func-
tion appear continuous on this interval? Is the function contin-
uous on Write a short paragraph about the importance
of examining a function analytically as well as graphically.

73. 74.

Writing In Exercises 75–78, explain why the function has a
zero in the given interval.

75.

76.

77.

78. '1, 3(f #x$ ! "
4
x

# tan,$x
8 /

'0, $(f #x$ ! x2 " 2 " cos x

'0, 1(f #x$ ! x3 # 3x " 2

'1, 2(f #x$ ! 1
16 x 4 " x3 # 3

IntervalFunction                       

f #x$ !
x3 " 8
x " 2

f #x$ !
sin x

x

[!4, 4]?

[!4, 4].

x

3

3

4

4

2

2

1

1

y

x

4

2

4

2 2

y

f #x$ !
x # 1
)x

f #x$ ! sec 
$x
4

x

4

4 2

4

4

2
( 3, 0)

y

x

1

2

1

1

2

2

y

f #x$ ! x)x # 3f #x$ !
x

x2 # 1

f #x$ ! %cos x " 1
x

,    x < 0

5x,                x 0

g#x$ ! %2x " 4,

x2 " 2x,

x 3

x > 3

h#x$ !
1

x2 " x " 2
f #x$ ! *x+ " x

x

g #x$ ! x2g#x$ ! x2 # 5

f #x$ ! sin xf #x$ !
1

x " 6

g #x$ ! x " 1g #x$ ! x " 1

f #x$ !
1
)x

f #x$ ! x2

h!x" # f !g!x"".

g #x$ ! %x2 " a2

x " a
,    x & a

8,              x ! a

f #x$ ! %2,
ax # b,
"2,

x "1
"1 < x < 3
x 3

g#x$ ! %4 sin x
x

,    x < 0

a " 2x,   x 0

f #x$ ! %x3,
ax2,

x 2
x > 2

b,
aa,

f #x$ ! &x2 # 4x&#x # 2$
x # 4

f #x$ ! &x2 " 4&x
x # 2

lim
x 0!

 f !x".lim
x 0"

 f !x"

f #x$ ! 3 " *x+
f #x$ ! *x " 1+

f #x$ ! tan 
$x
2

f #x$ ! csc 2x

f #x$ ! %csc $ x
        6 

,

2,
   

&x " 3& 2

&x " 3& > 2

f #x$ ! %tan $ x
        4 

,

x,    
&x& < 1

&x& 1

f #x$ ! %"2x,
x2 " 4x # 1,

x 2
x > 2

f #x$ ! %
1
2 x # 1,

3 " x,

x 2

x > 2
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In Exercises 79–82, use the Intermediate Value Theorem and a
graphing utility to approximate the zero of the function in the
interval Repeatedly “zoom in” on the graph of the function
to approximate the zero accurate to two decimal places. Use the
zero or root feature of the graphing utility to approximate the
zero accurate to four decimal places.

79.

80.

81.

82.

In Exercises 83–86, verify that the Intermediate Value Theorem
applies to the indicated interval and find the value of guaran-
teed by the theorem.

83.

84.

85.

86.

True or False? In Exercises 91–94, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. If and then is continuous at 

92. If for and then either or is
not continuous at 

93. A rational function can have infinitely many -values at which
it is not continuous.

94. The function is continuous on

95. Swimming Pool Every day you dissolve 28 ounces of
chlorine in a swimming pool. The graph shows the amount of
chlorine in the pool after days.

Estimate and interpret and 

96. Think About It Describe how the functions

and

differ.

97. Telephone Charges A dial-direct long distance call between
two cities costs $1.04 for the first 2 minutes and $0.36 for each
additional minute or fraction thereof. Use the greatest integer
function to write the cost of a call in terms of time (in
minutes). Sketch the graph of this function and discuss its
continuity.

tC

g#x$ ! 3 " *"x+

f #x$ ! 3 # *x+

lim
t 4#

 f #t$.lim
t 4"

 f #t$

y

t
6 754321

140

112

84

56

28

tf #t$

#"', '$.
f #x$ ! &x " 1&0#x " 1$

x

c.
gff #c$ & g#c$,x & cf #x$ ! g#x$

c.ff #c$ ! L,lim
x c

 f #x$ ! L

f #c$ ! 615
2

, 42,f #x$ !
x2 # x
x " 1

,

f #c$ ! 4'0, 3(,f #x$ ! x3 " x2 # x " 2,

f #c$ ! 0'0, 3(,f #x$ ! x2 " 6x # 8,

f #c$ ! 11'0, 5(,f #x$ ! x2 # x " 1,

c

h#($ ! 1 # ( " 3 tan (

g#t$ ! 2 cos t " 3t

f #x$ ! x3 # 3x " 2

f #x$ ! x3 # x " 1

[0, 1].

Writing About Concepts
87. State how continuity is destroyed at for each of the

following graphs.
(a) (b)

(c) (d)

88. Describe the difference between a discontinuity that is
removable and one that is nonremovable. In your explana-
tion, give examples of the following descriptions.

(a) A function with a nonremovable discontinuity at 

(b) A function with a removable discontinuity at 

(c) A function that has both of the characteristics described
in parts (a) and (b)

x ! "2

x ! 2

xc

y

xc

y

xc

y

xc

y

x ! c

Writing About Concepts (continued)
89. Sketch the graph of any function such that

and

Is the function continuous at Explain.

90. If the functions and are continuous for all real is 
always continuous for all real Is always continuous
for all real If either is not continuous, give an example to
verify your conclusion.

x?
f0gx?

f # gx,gf

x ! 3?

lim
x 3"

 f #x$ ! 0.lim
x 3#

 f #x$ ! 1

f
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98. Inventory Management The number of units in inventory in
a small company is given by

where is the time in months. Sketch the graph of this func-
tion and discuss its continuity. How often must this company
replenish its inventory?

99. Déjà Vu At 8:00 A.M. on Saturday a man begins running up
the side of a mountain to his weekend campsite (see figure). On
Sunday morning at 8:00 A.M. he runs back down the mountain.
It takes him 20 minutes to run up, but only 10 minutes to run
down. At some point on the way down, he realizes that he
passed the same place at exactly the same time on Saturday.
Prove that he is correct. [Hint: Let and be the position
functions for the runs up and down, and apply the Intermediate
Value Theorem to the function ]

100. Volume Use the Intermediate Value Theorem to show that
for all spheres with radii in the interval there is one with
a volume of 275 cubic centimeters.

101. Prove that if is continuous and has no zeros on then
either 

for all in or for all in 

102. Show that the Dirichlet function

is not continuous at any real number.

103. Show that the function

is continuous only at (Assume that is any nonzero
real number.)

104. The signum function is defined by

Sketch a graph of sgn and find the following (if possible).

(a) (b) (c)

105. Modeling Data After an object falls for seconds, the speed
(in feet per second) of the object is recorded in the table.

(a) Create a line graph of the data.

(b) Does there appear to be a limiting speed of the object? If
there is a limiting speed, identify a possible cause.

106. Creating Models A swimmer crosses a pool of width by
swimming in a straight line from to . (See figure.)

(a) Let be a function defined as the -coordinate of the point
on the long side of the pool that is nearest the swimmer at
any given time during the swimmer’s path across the pool.
Determine the function and sketch its graph. Is it
continuous? Explain.

(b) Let be the minimum distance between the swimmer and
the long sides of the pool. Determine the function and
sketch its graph. Is it continuous? Explain.

107. Find all values of such that is continuous on 

108. Prove that for any real number there exists in 
such that 

109. Let What is the domain of
How can you define at in order for to be

continuous there?

110. Prove that if then is continuous
at 

111. Discuss the continuity of the function 

112. (a) Let and be continuous on the closed interval
If and prove that there

exists between and such that 

(b) Show that there exists in such that Use
a graphing utility to approximate to three decimal places.c

cos x ! x.'0, $2(c

f1#c$ ! f2#c$.bac
f1#b$ > f2#b$,f1#a$ <  f2#a$'a, b(.

f2#x$f1#x$
h#x$ ! x *x+.

c.
flim

%x 0
 f #c # %x$ ! f #c$,

fx ! 0ff ?
c > 0.f #x$ ! #)x # c2 " c$0x,

tan x ! y.
#"$02, $02$xy

f #x$ ! %1 " x2,
x,

x c
x > c

#"', '$.fc

x
(0, 0)

(2b, b)

b

y

g
g

f

yf

#2b, b$#0, 0$
b

S
t

lim
x 0

 sgn#x$lim
x 0#

 sgn#x$lim
x 0"

 sgn#x$

#x$

sgn#x$ ! %"1,
0,
1,

x < 0
x ! 0
x > 0.

kx ! 0.

f #x$ ! %0,
kx,

    if x is rational
    if x is irrational

f #x$ ! %0,
1,

   if x is rational
   if x is irrational

'a, b(.xf #x$ < 0'a, b(xf #x$  >  0

'a, b(,f

'1, 5(,

Saturday 8:00 A.M. Sunday 8:00 A.M.
Not drawn to scale

f #t$ ! s#t$ " r#t$.

r#t$s#t$

t

N#t$ ! 25,2-t # 2
2 . " t/ t 0 5 10 15 20 25 30

S 0 48.2 53.5 55.2 55.9 56.2 56.3

Putnam Exam Challenge

113. Prove or disprove: if and are real numbers with and
then 

114. Determine all polynomials such that
and 

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

P#0$ ! 0.P#x2 # 1$ ! #P#x$$2 # 1
P#x$
y# y " 1$ x2.y# y # 1$ #x # 1$2,

y 0yx
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Section 1.5 Infinite Limits
• Determine infinite limits from the left and from the right.
• Find and sketch the vertical asymptotes of the graph of a function.

Infinite Limits
Let be the function given by

From Figure 1.39 and the table, you can see that decreases without bound as 
approaches 2 from the left, and increases without bound as approaches 2 from
the right. This behavior is denoted as

decreases without bound as approaches 2 from the left.

and

increases without bound as approaches 2 from the right.

A limit in which increases or decreases without bound as approaches is called
an infinite limit.

Be sure you see that the equal sign in the statement does not mean
that the limit exists! On the contrary, it tells you how the limit fails to exist by denoting
the unbounded behavior of as approaches c.xf!x"

lim f !x" ! "

cxf!x"

xf !x"lim
x→2#

 
3

x $ 2
! "

xf !x"lim
x→2$

 
3

x $ 2
! $"

xf!x"
xf!x"

 f!x" !
3

x $ 2
.

f

x

−2

−4

−4

−6

−6

2

4

4

6

6

→ −∞,

f (x) = 3
x − 2

3
x − 2
as x → 2−

→ ∞,3
x − 2
as x → 2+

y

increases and decreases without bound
as approaches 2.
Figure 1.39

x
f !x"

x

M

lim f (x) = ∞
x→c

δδ

c

y

Infinite limits
Figure 1.40

approaches 2 from the left.x approaches 2 from the right.x

decreases without bound.f !x" increases without bound.f !x"

1.5 1.9 1.99 1.999 2 2.001 2.01 2.1 2.5

? 3000 300 30 6$3000$300$30$6f#x$

x

Definition of Infinite Limits

Let be a function that is defined at every real number in some open interval
containing (except possibly at itself). The statement

means that for each there exists a such that whenever
(see Figure 1.40). Similarly, the statement

means that for each there exists a such that whenever
To define the infinite limit from the left, replace
by To define the infinite limit from the

right, replace by c < x < c # %.0 < %x $ c% < %
c $ % < x < c.0 < %x $ c% < %

0 < %x $ c% < %.
 f !x" < N% > 0N < 0

lim
x→c

 f !x" ! $"

0 < %x $ c% < %
 f !x" > M% > 0M > 0

lim
x→c

 f !x" ! "

cc
f

Video
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EXAMPLE 1 Determining Infinite Limits from a Graph

Use Figure 1.41 to determine the limit of each function as approaches 1 from the left
and from the right.

Solution

a. and

b. Limit from each side is 

c. and

d. Limit from each side is 

Vertical Asymptotes
If it were possible to extend the graphs in Figure 1.41 toward positive and negative
infinity, you would see that each graph becomes arbitrarily close to the vertical line

This line is a vertical asymptote of the graph of (You will study other types
of asymptotes in Sections 3.5 and 3.6.)

f.x ! 1.

$".lim
x→1

 
$1

!x $ 1"2 ! $"

lim
x→1#

 
$1

x $ 1
! $"lim

x→1$
 

$1
x $ 1

! "

".lim
x→1

 
1

!x $ 1"2 ! "

lim
x→1#

 
1

x $ 1
! "lim

x→1$
 

1
x $ 1

! $"

x

x

−1

−2

−3

1

2

2

3

f (x) = 1
x − 1

y

(a)

Figure 1.41 Each graph has an asymptote at x ! 1.

x

−1
−1

−2

−2

1

2

2

3

3

f (x) = 1
(x − 1)2

y

(b)

x

−1
−1

−2

−2

−3

2

2
f (x) = −1

x − 1

y

(c)

x

−1
−1

−2

−2

−3

1

2

2

f (x) = −1
(x − 1)2

y

(d)

NOTE If the graph of a function has
a vertical asymptote at then is
not continuous at c.

fx ! c,
f

E X P L O R A T I O N

Use a graphing utility to graph each function. For each function, analytically find
the single real number that is not in the domain. Then graphically find the limit
of as approaches from the left and from the right.

a. b.

c. d. f!x" !
$3

!x # 2"2f!x" !
2

!x $ 3"2

f!x" !
1

2 $ x
f!x" !

3
x $ 4

cxf!x"
c

Definition of Vertical Asymptote

If approaches infinity (or negative infinity) as approaches from the
right or the left, then the line is a vertical asymptote of the graph of f.x ! c

cxf!x"

Editable Graph Editable Graph Editable Graph Editable Graph

Try It Exploration A
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In Example 1, note that each of the functions is a quotient and that the vertical
asymptote occurs at a number where the denominator is 0 (and the numerator is not
0). The next theorem generalizes this observation. (A proof of this theorem is given in
Appendix A.)

EXAMPLE 2 Finding Vertical Asymptotes

Determine all vertical asymptotes of the graph of each function.

a. b. c.

Solution

a. When the denominator of

is 0 and the numerator is not 0. So, by Theorem 1.14, you can conclude that
is a vertical asymptote, as shown in Figure 1.42(a).

b. By factoring the denominator as

you can see that the denominator is 0 at and Moreover, because the
numerator is not 0 at these two points, you can apply Theorem 1.14 to conclude
that the graph of has two vertical asymptotes, as shown in Figure 1.42(b).

c. By writing the cotangent function in the form

you can apply Theorem 1.14 to conclude that vertical asymptotes occur at all values
of such that and as shown in Figure 1.42(c). So, the
graph of this function has infinitely many vertical asymptotes. These asymptotes
occur when where is an integer.

Theorem 1.14 requires that the value of the numerator at be nonzero. If
both the numerator and the denominator are 0 at you obtain the indeterminate
form and you cannot determine the limit behavior at without further 
investigation, as illustrated in Example 3.

x ! c0&0,
x ! c,

x ! c

nx ! n&,

cos x ' 0,sin x ! 0x

 f!x" ! cot x !
cos x
sin x

f

x ! 1.x ! $1

 f!x" !
x2 # 1
x2 $ 1

!
x2 # 1

!x $ 1"!x # 1"

x ! $1

 f!x" !
1

2!x # 1"

x ! $1,

f!x" ! cot xf!x" !
x2 # 1
x2 $ 1

f!x" !
1

2!x # 1"

THEOREM 1.14 Vertical Asymptotes

Let and be continuous on an open interval containing If 
and there exists an open interval containing such that for

all in the interval, then the graph of the function given by

has a vertical asymptote at x ! c.

h!x" !
f !x"
g!x"

x ' c
g!x" ' 0cg!c" ! 0,

f!c" ' 0,c.gf

Video

Try It Exploration A Exploration B Open Exploration

x
π ππ 2−2

2

4

6

−6

−4

f (x) = cot x
y

(c)

Functions with vertical asymptotes
Figure 1.42

x

2

2

4

4−2−4

f (f (x) = x2 + 1
x2 − 1

y

(b)

x

1

1

2

−1

−2

f (x) = 1
2(x + 1)

y

−1

(a)

Editable Graph

Editable Graph

Editable Graph
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EXAMPLE 3 A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

Solution Begin by simplifying the expression, as shown.

At all values other than the graph of coincides with the graph of
So, you can apply Theorem 1.14 to to conclude that there

is a vertical asymptote at as shown in Figure 1.43. From the graph, you can
see that

and

Note that is not a vertical asymptote.

EXAMPLE 4 Determining Infinite Limits

Find each limit.

and

Solution Because the denominator is 0 when (and the numerator is not zero),
you know that the graph of

has a vertical asymptote at This means that each of the given limits is either 
or A graphing utility can help determine the result. From the graph of shown
in Figure 1.44, you can see that the graph approaches from the left of and
approaches from the right of So, you can conclude that

The limit from the left is infinity.

and

The limit from the right is negative infinity.lim
x→1#

 
x2 $ 3x
x $ 1

! $".

lim
x→1$

 
x2 $ 3x
x $ 1

! "

x ! 1.$"
x ! 1"

f$".
"x ! 1.

f!x" !
x2 $ 3x
x $ 1

x ! 1

lim
x→1#

 
x2 $ 3x
x $ 1

lim
x→1$

 
x2 $ 3x
x $ 1

x ! 2

lim
x→$2#

 
x2 # 2x $ 8

x2 $ 4
! ".lim

x→$2$
 
x2 # 2x $ 8

x2 $ 4
! $"

x ! $2,
gg!x" ! !x # 4"&!x # 2".

fx ! 2,x-

 !
x # 4
x # 2

,    x ' 2

 !
!x # 4"!x $ 2"
!x # 2"!x $ 2"

 f!x" !
x2 # 2x $ 8

x2 $ 4

f!x" !
x2 # 2x $ 8

x2 $ 4
.

4

2

−2

2−4

y

x

Undefined
when x = 2

Vertical
asymptote
at x = −2

f (x) = x
2 + 2x − 8
x2 − 4

increases and decreases without bound
as approaches 
Figure 1.43

$2.x
f !x"

−4

−6

6

6

f (x) = x2 − 3x
x − 1

has a vertical asymptote at 
Figure 1.44

x ! 1.f

TECHNOLOGY PITFALL When using a graphing calculator or graphing
software, be careful to interpret correctly the graph of a function with a vertical
asymptote—graphing utilities often have difficulty drawing this type of graph.

Editable Graph

Editable Graph

Try It Exploration A Exploration B

Try It Exploration A
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Proof To show that the limit of is infinite, choose You then need
to find such that

whenever For simplicity’s sake, you can assume is positive. Let
Because the limit of is infinite, there exists such that 

whenever Also, because the limit of is there exists such
that whenever By letting be the smaller of and

you can conclude that implies and
The second of these two inequalities implies that and,

adding this to the first inequality, you can write

So, you can conclude that

The proofs of the remaining properties are left as exercises (see Exercise 72).

EXAMPLE 5 Determining Limits

a. Because and you can write

Property 1, Theorem 1.15

b. Because and you can write

Property 3, Theorem 1.15

c. Because and you can write

Property 2, Theorem 1.15lim
x→0#

 3 cot x ! ".

lim
x→0#

 cot x ! ",lim
x→0#

 3 ! 3

lim
x→1$

 
x2 # 1
cot &x

! 0.

lim
x→1$

!cot &x" ! $",lim
x→1$

!x2 # 1" ! 2

lim
x→0 '1 #

1
x2( ! ".

lim
x→0

 
1
x2 ! ",lim

x→0
 1 ! 1

lim
x→c

 ) f!x" # g!x"* ! ".

f!x" # g!x" > !M # 1" # !L $ 1" ! M # L > M.

g!x" > L $ 1,%g!x" $ L% < 1.
f!x" > M # 10 < %x $ c% < %%2,

%1%0 < %x $ c% < %2.%g!x" $ L% < 1
%2L,g!x"0 < %x $ c% < %1.

f!x" > M1%1f !x"M1 ! M # 1.
L0 < %x $ c% < %.

) f !x" # g!x"* > M

% > 0
M > 0.f!x" # g!x"

THEOREM 1.15 Properties of Infinite Limits

Let and be real numbers and let and be functions such that

and

1. Sum or difference:

2. Product:

3. Quotient:

Similar properties hold for one-sided limits and for functions for which the
limit of as approaches is $".cxf!x"

lim
x→c

 
g!x"
f!x" ! 0

L < 0lim
x→c

 ) f!x"g!x"* ! $",

L > 0lim
x→c

 ) f!x"g!x"* ! ",

lim
x→c

 ) f!x" ± g!x"* ! "

lim
x→c

 g!x" ! L.lim
x→c

 f!x" ! "

gfLc

Try It Exploration A
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E x e r c i s e s  f o r  S e c t i o n  1 . 5

In Exercises 1–4, determine whether approaches or
as approaches from the left and from the right.

1. 2.

3. 4.

Numerical and Graphical Analysis In Exercises 5–8, determine
whether approaches or as approaches from
the left and from the right by completing the table. Use a
graphing utility to graph the function and confirm your answer.

5. 6.

7. 8.

In Exercises 9–28, find the vertical asymptotes (if any) of the
graph of the function.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21.

22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, determine whether the graph of the function
has a vertical asymptote or a removable discontinuity at 
Graph the function using a graphing utility to confirm your
answer.

29. 30.

31. 32.

In Exercises 33–48, find the limit.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–52, use a graphing utility to graph the function
and determine the one-sided limit.

49. 50.

51. 52.

lim
x 3!

 f !x"lim
x 5"

 f !x"

f !x" # sec 
$x
6

f !x" #
1

x2 " 25

lim
x 1"

 f !x"lim
x 1!

 f !x"

f !x" #
x3 " 1

x2 ! x ! 1
f !x" #

x2 ! x ! 1
x3 " 1

lim
x 1#2

 x2 tan $xlim
x 1#2

 x sec $x

lim
x 0

  
x ! 2
cot x

lim
x $

  
$x

csc x

lim
x !$#2"!

 
"2

cos x
 lim

x 0!
 

2
sin x

lim
x 0"%x2 "

1
x&lim

x 0" %1 !
1
x&

lim
x 3

 
x " 2

x2lim
x 1

 
x2 " x

!x2 ! 1"!x " 1"

lim
x !"1#2"!

 
6x2 ! x " 1
4x2 " 4x " 3

lim
x "3"

 
x2 ! 2x " 3
x2 ! x " 6

lim
x 4"

 
x2

x2 ! 16
lim

x 3!
  

x2

x2 " 9

lim
x 1!

 
2 ! x
1 " x

lim
x 2!

 
x " 3
x " 2

f !x" #
sin!x ! 1"

x ! 1
f !x" #

x2 ! 1
x ! 1

f !x" #
x2 " 6x " 7

x ! 1
f !x" #

x2 " 1
x ! 1

x ! "1.

g!%" #
tan %

%
s!t" #

t
sin t

h!t" #
t 2 " 2t
t 4 " 16

f !x" #
x2 " 2x " 15

x3 " 5x2 ! x " 5

h!x" #
x2 " 4

x3 ! 2x2 ! x ! 2
g!x" #

x3 ! 1
x ! 1

f !x" #
4x2 ! 4x " 24

x4 " 2x3 " 9x2 ! 18x

f !x" #
x

x2 ! x " 2

g!x" #
1
2 x3 " x2 " 4x
3x2 " 6x " 24

T!t" # 1 "
4
t2

f !x" # sec $xf !x" # tan 2x

h!s" #
2s " 3
s2 " 25

g!t" #
t " 1
t 2 ! 1

f !x" #
"4x

x2 ! 4
f !x" #

x2

x2 " 4

g!x" #
2 ! x

x2!1 " x"h!x" #
x2 " 2

x2 " x " 2

f !x" #
4

!x " 2"3f !x" #
1
x2

f !x" # sec 
$x
6

f !x" #
x2

x2 " 9

f !x" #
x

x2 " 9
f !x" #

1
x2 " 9

"3x"##f 'x(

x
6 2 2 6

1

y

x
6 2 2 6

3
2
1

y

f !x" # sec 
$x
4

f !x" # tan 
$x
4

x
1 1

3
2

2
3

y

x
2 2 4

2

2

4

6

y

f !x" #
1

x ! 2
f !x" # 2) x

x2 " 4)
"2x"#

#f 'x(

f 'x(

"3.001"3.01"3.1"3.5x

f 'x(

"2.5"2.9"2.99"2.999x
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58. Boyle’s Law For a quantity of gas at a constant temperature,
the pressure is inversely proportional to the volume Find
the limit of as 

59. Rate of Change A patrol car is parked 50 feet from a long
warehouse (see figure). The revolving light on top of the car
turns at a rate of revolution per second. The rate at which the
light beam moves along the wall is

ft/sec.

(a) Find the rate when is 

(b) Find the rate when is 

(c) Find the limit of as 

60. Illegal Drugs The cost in millions of dollars for a govern-
mental agency to seize of an illegal drug is

(a) Find the cost of seizing 25% of the drug.

(b) Find the cost of seizing 50% of the drug.

(c) Find the cost of seizing 75% of the drug.

(d) Find the limit of as and interpret its meaning.

61. Relativity According to the theory of relativity, the mass of
a particle depends on its velocity That is,

where is the mass when the particle is at rest and is the
speed of light. Find the limit of the mass as approaches 

62. Rate of Change A 25-foot ladder is leaning against a house
(see figure). If the base of the ladder is pulled away from the
house at a rate of 2 feet per second, the top will move down the
wall at a rate of

ft/sec

where is the distance between the base of the ladder and the
house.

(a) Find the rate when is 7 feet.

(b) Find the rate when is 15 feet.

(c) Find the limit of as 

63. Average Speed On a trip of miles to another city, a truck
driver’s average speed was miles per hour. On the return trip
the average speed was miles per hour. The average speed for
the round trip was 50 miles per hour.

(a) Verify that What is the domain?

(b) Complete the table.

Are the values of different than you expected? Explain.

(c) Find the limit of as and interpret its meaning.

64. Numerical and Graphical Analysis Use a graphing utility to
complete the table for each function and graph each function to
estimate the limit. What is the value of the limit when the power
on in the denominator is greater than 3?

(a) (b)

(c) (d) lim
x 0!

 
x " sin x

x4lim
x 0!

 
x " sin x

x3

lim
x 0!

 
x " sin x

x2lim
x 0!

 
x " sin x

x

x

x 25!y

y

y #
25x

x " 25
.

y
x

d

2

25 ft

ft
sec

r

x 25".r

xr

xr

x

r #
2x

$625 " x2

c".v
cm0

m #
m0

$1 " !v2#c2"

v.
m

x 100"C

0 x < 100.C #
528x

100 " x
,

x%

x

50 ft

% !$#2"".r

$#3.%r

$#6.%r

r # 50$ sec2 %

1
2

V 0!.P
V.P

30 40 50 60

y

x

1 0.5 0.2 0.1 0.01 0.001 0.0001

f 'x(

x

Writing About Concepts
53. In your own words, describe the meaning of an infinite

limit. Is a real number?
54. In your own words, describe what is meant by an asymptote

of a graph.
55. Write a rational function with vertical asymptotes at 

and and with a zero at 
56. Does the graph of every rational function have a vertical

asymptote? Explain.
57. Use the graph of the function (see figure) to sketch the

graph of on the interval To print
an enlarged copy of the graph, select the MathGraph button.

321
1

12

2

x

f

y

*"2, 3+.g!x" # 1#f !x"
f

x # 3.x # "2,
x # 6

&
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65. Numerical and Graphical Analysis Consider the shaded
region outside the sector of a circle of radius 10 meters and
inside a right triangle (see figure).

(a) Write the area of the region as a function of 
Determine the domain of the function.

(b) Use a graphing utility to complete the table and graph the
function over the appropriate domain.

(c) Find the limit of as 

66. Numerical and Graphical Reasoning A crossed belt connects
a 20-centimeter pulley (10-cm radius) on an electric motor with
a 40-centimeter pulley (20-cm radius) on a saw arbor (see
figure). The electric motor runs at 1700 revolutions per minute.

(a) Determine the number of revolutions per minute of the saw.

(b) How does crossing the belt affect the saw in relation to the
motor?

(c) Let be the total length of the belt. Write as a function of
where is measured in radians. What is the domain of

the function? (Hint: Add the lengths of the straight sections
of the belt and the length of the belt around each pulley.)

(d) Use a graphing utility to complete the table.

(e) Use a graphing utility to graph the function over the appro-
priate domain.

(f) Find Use a geometric argument as the basis of

a second method of finding this limit.

(g) Find 

True or False? In Exercises 67–70, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

67. If is a polynomial, then the graph of the function given by

has a vertical asymptote at 

68. The graph of a rational function has at least one vertical
asymptote.

69. The graphs of polynomial functions have no vertical
asymptotes.

70. If has a vertical asymptote at then is undefined at

71. Find functions and such that and
but 

72. Prove the remaining properties of Theorem 1.15.

73. Prove that if then 

74. Prove that if then does not exist.

Infinite Limits In Exercises 75 and 76, use the - definition of
infinite limits to prove the statement.

75. 76. lim
x 4"

 
1

x " 4
# "&lim

x 3!
 

1
x " 3

# &

$'

lim
x c

 f 'x(lim
x c

  
1

f !x" # 0,

lim
x c

  
1

f !x" # 0.lim
x c

 f !x" # &,

lim
x c

 * f !x" " g!x"+ ( 0.lim
x c

 g!x" # &
lim
x c

 f !x" # &gf

x # 0.
fx # 0,f

x # 1.f !x" #
p!x"

x " 1

p!x"

lim
) 0!

 L.

lim
) !$#2""

 L.

)),
LL

10 cm 20 cm

10 m

% !$#2"".A

%.A # f !%"

0.3 0.6 0.9 1.2 1.5

f '%(

%

0.3 0.6 0.9 1.2 1.5

L

&



The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.

In Exercises 1 and 2, determine whether the problem can be
solved using precalculus or if calculus is required. If the problem
can be solved using precalculus, solve it. If the problem seems to
require calculus, explain your reasoning. Use a graphical or
numerical approach to estimate the solution.

1. Find the distance between the points and along the
curve 

2. Find the distance between the points and along the
line 

In Exercises 3 and 4, complete the table and use the result to
estimate the limit. Use a graphing utility to graph the function
to confirm your result.

3.

4.

In Exercises 5 and 6, use the graph to determine each limit.

5. 6.

(a) (b) (a) (b)

In Exercises 7–10, find the limit Then use the - definition
to prove that the limit is 

7. 8.

9. 10.

In Exercises 11–24, find the limit (if it exists).

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

23.

[Hint: ]

24.

[Hint: ]

In Exercises 25 and 26, evaluate the limit given 
and 

25.

26.

Numerical, Graphical, and Analytic Analysis In Exercises 27
and 28, consider

(a) Complete the table to estimate the limit.

(b) Use a graphing utility to graph the function and use the
graph to estimate the limit.

(c) Rationalize the numerator to find the exact value of the
limit analytically.

27.

28.

Hint:

Free-Falling Object In Exercises 29 and 30, use the position
function which gives the height (in meters)
of an object that has fallen from a height of 200 meters. The
velocity at time seconds is given by

29. Find the velocity of the object when 

30. At what velocity will the object impact the ground?

t ! 4.

lim
t a

 
s!a" ! s!t"

a ! t
.

t " a

s!t" " !4.9t 2 # 200,

a3 " b3 ! #a " b$#a2 # ab # b2$%&

f #x$ !
1 " 3'x
x " 1

f #x$ !
'2x # 1 " '3

x " 1

lim
x 1#

 f !x".

lim
x c

 & f #x$ # 2g#x$%

lim
x c

 & f #x$g#x$%

lim
x c

 g!x" " 2
3.
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x c

 f !x" " !3
4

cos#$ # %$ ! cos $ cos % " sin $ sin %

lim
&x 0

 
cos#' # &x$ # 1

&x

sin#$ # %$ ! sin $ cos % # cos $ sin %

lim
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sin&#'(6$ # &x% " #1(2$

&x

lim
x '(4

 
4x

tan x

lim
x 0

 
1 " cos x

sin x

lim
x "2

 
x2 " 4
x3 # 8

lim
x "5

 
x3 # 125

x # 5

lim
s 0

 
#1('1 # s $ " 1

s
lim
x 0

 
&1(#x # 1$% " 1

x

lim
x 0

 
'4 # x " 2

x
lim
x 4

 
'x " 2
x " 4

lim
t 3

 
t 2 " 9
t " 3

lim
t "2

 
t # 2
t 2 " 4

lim
y 4

 3)y " 1)lim
t 4

 't # 2

lim
x 5

 9lim
x 2

 #x2 " 3$

lim
x 9

 'xlim
x 1

 #3 " x$

L.
$(L.

lim
x 0

 g#x$lim
x 2

 g#x$lim
x "1

 h#x$lim
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x
4 4 8

4

4

8
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2

2

4

x

y

h
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3x

x " 2
h#x$ !

x2 " 2x
x

lim
x 0

 
4#'x # 2 " '2$

x

lim
x 0

  
&4(#x # 2$% " 2

x

y ! 4x " 3.
#3, 9$#1, 1$
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In Exercises 31–36, find the limit (if it exists). If the limit does
not exist, explain why.

31.

32.

33. where 

34. where 

35. where 

36. where 

In Exercises 37–46, determine the intervals on which the func-
tion is continuous.

37.

38.

39.

40.

41. 42.

43. 44.

45. 46.

47. Determine the value of such that the function is continuous on
the entire real line.

48. Determine the values of and such that the function is
continuous on the entire real line.

49. Use the Intermediate Value Theorem to show that
has a zero in the interval 

50. Delivery Charges The cost of sending an overnight package
from New York to Atlanta is $9.80 for the first pound and $2.50
for each additional pound or fraction thereof. Use the greatest
integer function to create a model for the cost of overnight
delivery of a package weighing pounds. Use a graphing 
utility to graph the function and discuss its continuity.

51. Let Find each limit (if possible).

(a)

(b)

(c)

52. Let 

(a) Find the domain of 

(b) Find 

(c) Find 

In Exercises 53–56, find the vertical asymptotes (if any) of the
graphs of the function.

53. 54.

55. 56.

In Exercises 57–68, find the one-sided limit.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. Environment A utility company burns coal to generate elec-
tricity. The cost in dollars of removing of the air
pollutants in the stack emissions is

Find the cost of removing (a) 15%, (b) 50%, and (c) 90% of
the pollutants. (d) Find the limit of as 

70. The function is defined as shown.

(a) Find (if it exists).

(b) Can the function be defined at such that it is
continuous at x ! 0?

x ! 0f

lim
x 0

 
tan 2x

x

x ) 0f #x$ !
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x
,

f

p 100".C

0 p < 100.C !
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Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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P.S. Problem Solving

1. Let be a point on the parabola in the first quad-
rant. Consider the triangle formed by and the
origin , and the triangle formed by and
the origin.

(a) Write the perimeter of each triangle in terms of 

(b) Let be the ratio of the perimeters of the two triangles,

Complete the table.

(c) Calculate .

2. Let be a point on the parabola in the first quad-
rant. Consider the triangle formed by and the
origin , and the triangle formed by and
the origin.

(a) Write the area of each triangle in terms of 

(b) Let be the ratio of the areas of the two triangles,

Complete the table.

(c) Calculate 

3. (a) Find the area of a regular hexagon inscribed in a circle of
radius 1. How close is this area to that of the circle?

(b) Find the area of an -sided regular polygon inscribed in
a circle of radius 1. Write your answer as a function of 

(c) Complete the table.

(d) What number does approach as gets larger and larger?

Figure for 3 Figure for 4

4. Let be a point on the circle 

(a) What is the slope of the line joining and 

(b) Find an equation of the tangent line to the circle at 

(c) Let be another point on the circle in the first quadrant.
Find the slope of the line joining and in terms of 

(d) Calculate How does this number relate to your

answer in part (b)?

5. Let be a point on the circle 

(a) What is the slope of the line joining and 

(b) Find an equation of the tangent line to the circle at 

(c) Let be another point on the circle in the fourth quad-
rant. Find the slope of the line joining and in terms
of 

(d) Calculate How does this number relate to your

answer in part (b)?

6. Find the values of the constants and such that 
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A"0, 1#,P,!PAO

y # x2P"x, y#
lim

x 0!
 r"x#

r"x# #
Perimeter !PAO
Perimeter !PBO

.

r"x#
x.

x

A P

O
B

1

1

y

B"1, 0#,P,!PBOO"0, 0#
A"0, 1#,P,!PAO

y # x2P"x, y#

4 2 1 0.1 0.01

Perimeter 

Perimeter 

r$x%

!PBO

!PAO

x

4 2 1 0.1 0.01

Area 

Area 

a$x%

!PBO

!PAO

x

6 12 24 48 96
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7. Consider the function 

(a) Find the domain of 

(b) Use a graphing utility to graph the function.

(c) Calculate .

(d) Calculate 

8. Determine all values of the constant such that the following
function is continuous for all real numbers.

9. Consider the graphs of the four functions and .

For each given condition of the function which of the graphs
could be the graph of 

(a)

(b) is continuous at 2.

(c)

10. Sketch the graph of the function .

(a) Evaluate and 

(b) Evaluate the limits , and
.

(c) Discuss the continuity of the function.

11. Sketch the graph of the function 

(a) Evaluate and 

(b) Evaluate the limits and .

(c) Discuss the continuity of the function.

12. To escape Earth’s gravitational field, a rocket must be launched
with an initial velocity called the escape velocity. A rocket
launched from the surface of Earth has velocity (in miles per
second) given by

where is the initial velocity, is the distance from the rocket to
the center of Earth, is the gravitational constant, is the mass
of Earth, and is the radius of Earth (approximately 4000 miles).

(a) Find the value of for which you obtain an infinite limit
for as tends to zero. This value of is the escape
velocity for Earth.

(b) A rocket launched from the surface of the moon has
velocity (in miles per second) given by 

Find the escape velocity for the moon.

(c) A rocket launched from the surface of a planet has velocity
(in miles per second) given by 

Find the escape velocity for this planet. Is the mass of this
planet larger or smaller than that of Earth? (Assume that the
mean density of this planet is the same as that of Earth.)

13. For positive numbers the pulse function is defined as

where is the Heaviside function.

(a) Sketch the graph of the pulse function.

(b) Find the following limits:

(i) (ii)

(iii) (iv)

(c) Discuss the continuity of the pulse function.

(d) Why is

called the unit pulse function?

14. Let be a nonzero constant. Prove that if then

Show by means of an example that must be

nonzero.

alim
x 0

 f "ax# # L.

lim
x 0

 f "x# # L,a

U"x# #
1

b " a
 Pa,b"x#

lim
x b"

 Pa,b"x#lim
x b!

 Pa,b"x#

lim
x a"

 Pa,b"x#lim
x a!

 Pa,b"x#

H"x# # &1,
0,

      x 0
      x < 0

Pa,b"x# # H"x " a# " H"x " b# # &0,
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      x < a
      a x < b
      x b
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f "x# # (x) ! ("x).

lim
x 0!

 f "x#
lim
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x 1!
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f "1#.f "3#,f "1
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f
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  f "x# # 3
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x
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3
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,
    

    x 0
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a
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x 1

  f "x#.
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  f "x#

f.
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.
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Section 2.1 The Derivative and the Tangent Line Problem
• Find the slope of the tangent line to a curve at a point.
• Use the limit definition to find the derivative of a function.
• Understand the relationship between differentiability and continuity.

The Tangent Line Problem
Calculus grew out of four major problems that European mathematicians were work-
ing on during the seventeenth century.

1. The tangent line problem (Section 1.1 and this section)

2. The velocity and acceleration problem (Sections 2.2 and 2.3)

3. The minimum and maximum problem (Section 3.1)

4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and calculus can be introduced with any
of the four problems.

A brief introduction to the tangent line problem is given in Section 1.1. Although
partial solutions to this problem were given by Pierre de Fermat (1601–1665), René
Descartes (1596–1650), Christian Huygens (1629–1695), and Isaac Barrow
(1630 –1677), credit for the first general solution is usually given to Isaac Newton
(1642–1727) and Gottfried Leibniz (1646–1716). Newton’s work on this problem
stemmed from his interest in optics and light refraction.

What does it mean to say that a line is tangent to a curve at a point? For a circle,
the tangent line at a point is the line that is perpendicular to the radial line at point

as shown in Figure 2.1.
For a general curve, however, the problem is more difficult. For example, how

would you define the tangent lines shown in Figure 2.2? You might say that a line is
tangent to a curve at a point if it touches, but does not cross, the curve at point 
This definition would work for the first curve shown in Figure 2.2, but not for the
second. Or you might say that a line is tangent to a curve if the line touches or
intersects the curve at exactly one point. This definition would work for a circle but
not for more general curves, as the third curve in Figure 2.2 shows.

P.P

P,
P

ISAAC NEWTON (1642–1727)

In addition to his work in calculus, Newton
made revolutionary contributions to physics,
including the Law of Universal Gravitation
and his three laws of motion.

x

P

y

Tangent line to a circle
Figure 2.1

x

P

y = f (x)

y

x

P

y = f (x)

y

x

P
y = f (x)

y

Tangent line to a curve at a point
Figure 2.2FOR FURTHER INFORMATION For

more information on the crediting of
mathematical discoveries to the first
“discoverer,” see the article
“Mathematical Firsts—Who Done It?”
by Richard H. Williams and Roy D.
Mazzagatti in Mathematics Teacher.

E X P L O R A T I O N

Identifying a Tangent Line Use a graphing utility to graph the function
On the same screen, graph 

and Which of these lines, if any, appears to be tangent to the graph
of at the point Explain your reasoning.!0, !5"?f

y " 3x ! 5.
y " 2x ! 5,y " x ! 5,f!x" " 2x3 ! 4x2 # 3x ! 5.

MathBio

MathArticle
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Essentially, the problem of finding the tangent line at a point boils down to the
problem of finding the slope of the tangent line at point You can approximate this
slope using a secant line* through the point of tangency and a second point on the
curve, as shown in Figure 2.3. If is the point of tangency and

is a second point on the graph of the slope of the secant line
through the two points is given by substitution into the slope formula

The right-hand side of this equation is a difference quotient. The denominator is
the change in and the numerator is the change in 

The beauty of this procedure is that you can obtain more and more accurate
approximations of the slope of the tangent line by choosing points closer and closer
to the point of tangency, as shown in Figure 2.4.

To view a sequence of secant lines approaching a tangent line, select the
Animation button.

The slope of the tangent line to the graph of at the point is also called
the slope of the graph of at x ! c.f

!c, f !c""f

y.$y " f !c # $x" ! f !c"x,
$x

Change in y
Change in x

msec "
f!c # $x" ! f !c"

!c # $x" ! c

 m "
y2 ! y1

x2 ! x1

f,!c # $x, f !c # $x""
!c, f !c""

P.
P

THE TANGENT LINE PROBLEM

In 1637, mathematician René Descartes stated
this about the tangent line problem:

“And I dare say that this is not only the most
useful and general problem in geometry that
I know, but even that I ever desire to know.”

x

(c + ∆x, f(c + ∆x))

f (c + ∆x) − f (c) = ∆y

∆x

(c, f (c))

y

The secant line through and

Figure 2.3
!c # $x, f!c # $x""

!c, f!c""
Slope of secant linemsec "

f!c # $x" ! f !c"
$x

.

Tangent line

∆x → 0

∆x

∆x

∆x

∆y

∆y

∆y

(c, f (c))

(c, f (c))

(c, f (c))

(c, f (c))

Tangent line

∆x

∆x

∆x

∆y

∆y

∆y
(c, f (c))

(c, f (c))

(c, f (c))

(c, f (c))

∆x → 0

Tangent line approximations
Figure 2.4

* This use of the word secant comes from the Latin secare, meaning to cut, and is not a reference
to the trigonometric function of the same name.

Definition of Tangent Line with Slope m

If is defined on an open interval containing and if the limit

exists, then the line passing through with slope is the tangent line to
the graph of at the point !c, f !c"".f

m!c, f !c""

lim
$x→0

 
$y
$x

" lim
$x→0

f !c # $x" ! f !c"
$x

" m

c,f

Animation

Video Video
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EXAMPLE 1 The Slope of the Graph of a Linear Function

Find the slope of the graph of

at the point 

Solution To find the slope of the graph of when you can apply the defini-
tion of the slope of a tangent line, as shown.

The slope of at is as shown in Figure 2.5.

NOTE In Example 1, the limit definition of the slope of agrees with the definition of the
slope of a line as discussed in Section P.2.

The graph of a linear function has the same slope at any point. This is not true of
nonlinear functions, as shown in the following example.

EXAMPLE 2 Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of

at the points and as shown in Figure 2.6.

Solution Let represent an arbitrary point on the graph of Then the slope
of the tangent line at is given by

So, the slope at any point on the graph of is At the point the
slope is and at the slope is 

NOTE In Example 2, note that is held constant in the limit process !as $x → 0".c

m " 2!!1" " !2.!!1, 2",m " 2!0" " 0,
!0, 1",m " 2c.f!c, f !c""

 " 2c.

 " lim
$x→0

 !2c # $x"

 " lim
$x→0

 
2c!$x" # !$x"2

$x

 " lim
$x→0

 
c2 # 2c!$x" # !$x"2 # 1 ! c2 ! 1

$x

 lim
$x→0

 
f !c # $x" ! f !c"

$x
" lim

$x→0
 
#!c # $x"2 # 1$ ! !c2 # 1"

$x

!c, f !c""
f.!c, f !c""

!!1, 2",!0, 1"

f !x" " x2 # 1

f

m " 2,!2, 1"!c, f !c"" "f

 " 2

 " lim
$x→0  2

 " lim
$x→0

   
2$x
$x

 " lim
$x→0  

4 # 2$x ! 3 ! 4 # 3
$x

 lim
$x→0

 
f !2 # $x" ! f !2"

$x
" lim

$x→0
 
#2!2 # $x" ! 3$ ! #2!2" ! 3$

$x

c " 2,f

!2, 1".

f !x" " 2x ! 3

4

21

3

2

−2 −1
x

Tangent line
at (0, 1)

Tangent
line at
(−1,2)

f (x) = x2 + 1

y

x
1 2 3

3

2

1 (2, 1)
m = 2

f (x) = 2x − 3

∆x  = 1

∆y  = 2

y

The slope of at is 
Figure 2.5

m " 2.!2, 1"f

The slope of at any point is

Figure 2.6
m " 2c.

!c, f!c""f

Editable Graph

Editable Graph

Try It Exploration A

Try It Exploration A
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The definition of a tangent line to a curve does not cover the possibility of a
vertical tangent line. For vertical tangent lines, you can use the following definition.
If is continuous at and

or

the vertical line passing through is a vertical tangent line to the graph
of For example, the function shown in Figure 2.7 has a vertical tangent line at

If the domain of is the closed interval you can extend the definition
of a vertical tangent line to include the endpoints by considering continuity and 
limits from the right and from the left 

The Derivative of a Function
You have now arrived at a crucial point in the study of calculus. The limit used to
define the slope of a tangent line is also used to define one of the two fundamental
operations of calculus—differentiation.

Be sure you see that the derivative of a function of is also a function of This
“new” function gives the slope of the tangent line to the graph of at the point

provided that the graph has a tangent line at this point.
The process of finding the derivative of a function is called differentiation. A

function is differentiable at if its derivative exists at and is differentiable on an
open interval if it is differentiable at every point in the interval.

In addition to which is read as “ prime of ,” other notations are used to
denote the derivative of The most common are

The notation is read as “the derivative of with respect to ” or simply
“ ”. Using limit notation, you can writedy ! dx

xydy%dx

y " f !x".
xff%!x",

&a, b'
xx

!x, f !x"",
f

x.x

!for x " b".!for x " a"

#a, b$,f!c, f !c"".
f.

!c, f !c""x " c

lim
$x→0

 
f !c # $x" ! f !c"

$x
" !& lim

$x→0
 
f !c # $x" ! f !c"

$x
" &

cf

x

Vertical
tangent
line

c

(c, f (c))

y

The graph of has a vertical tangent line at

Figure 2.7
!c, f!c"".

f

Notation for derivativesf%!x",    dy
dx

,    y%,    
d
dx

# f !x"$,    Dx#y$.

 " f%!x".

 " lim
$x→0  

f !x # $x" ! f !x"
$x

 
dy
dx

" lim
$x→0  

$y
$x

Definition of the Derivative of a Function

The derivative of at is given by

provided the limit exists. For all for which this limit exists, is a function
of x.

f%x

f%!x" " lim
$x→0

  
f !x # $x" ! f !x"

$x

xf

Video

History
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EXAMPLE 3 Finding the Derivative by the Limit Process

Find the derivative of 

Solution

Definition of derivative

The editable graph feature below allows you to edit the graph of a function and
its derivative.

Remember that the derivative of a function is itself a function, which can be
used to find the slope of the tangent line at the point on the graph of 

EXAMPLE 4 Using the Derivative to Find the Slope at a Point

Find for Then find the slope of the graph of at the points and
Discuss the behavior of at 

Solution Use the procedure for rationalizing numerators, as discussed in Section 1.3.

Definition of derivative

At the point the slope is At the point the slope is 
See Figure 2.8. At the point the slope is undefined. Moreover, the graph of 
has a vertical tangent line at !0, 0".

f!0, 0",
f%!4" " 1

4.!4, 2",f%!1" " 1
2.!1, 1",

 "
1

2(x
,  x > 0

 " lim
$x→0  

1
(x # $x # (x

 " lim
$x→0  

$x
$x!(x # $x # (x " 

 " lim
$x→0  

!x # $x" ! x
$x!(x # $x # (x "

 " lim
$x→0  )(x # $x ! (x

$x *)(x # $x # (x
(x # $x # (x *

 " lim
$x→0  

(x # $x ! (x
$x

 f%!x" " lim
$x→0

  
f !x # $x" ! f !x"

$x

!0, 0".f!4, 2".
!1, 1"ff !x" " (x.f%!x"

f.!x, f !x""
f

 " 3x2 # 2

 " lim
$x→0  #3x2 # 3x$x # !$x"2 # 2$

 " lim
$x→0  

$x #3x2 # 3x$x # !$x"2 # 2$
$x

 " lim
$x→0  

3x2$x # 3x!$x"2 # !$x"3 # 2$x
$x

 " lim
$x→0  

x3 # 3x2$x # 3x!$x"2 # !$x"3 # 2x # 2$x ! x3 ! 2x
$x

 " lim
$x→0  

!x # $x"3 # 2!x # $x" ! !x3 # 2x"
$x

 f%!x" " lim
$x→0

  
f !x # $x" ! f !x"

$x

f !x" " x3 # 2x.

x
1

2

2

3

3 4

(1, 1)

(4, 2)

(0, 0)

m = 1
2

m = 1
4

y

f (x) =    x

The slope of at is

Figure 2.8
m " 1+!2(x ".

x > 0,!x, f!x"",f

STUDY TIP When using the definition
to find a derivative of a function, the key
is to rewrite the difference quotient so
that does not occur as a factor of the
denominator.

$x

Try It Exploration A Exploration B

Exploration C Open Exploration

Try It Exploration A Exploration B Exploration CEditable Graph

Editable Graph
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In many applications, it is convenient to use a variable other than as the
independent variable, as shown in Example 5.

EXAMPLE 5 Finding the Derivative of a Function

Find the derivative with respect to for the function 

Solution Considering you obtain

Definition of derivative

and 

Combine fractions in numerator.

Divide out common factor of 

Simplify.

Evaluate limit as 

The editable graph feature below allows you to edit the graph of a function and
its derivative.

Differentiability and Continuity
The following alternative limit form of the derivative is useful in investigating the
relationship between differentiability and continuity. The derivative of at is

provided this limit exists (see Figure 2.10). (A proof of the equivalence of this form
is given in Appendix A.) Note that the existence of the limit in this alternative form
requires that the one-sided limits

and

exist and are equal. These one-sided limits are called the derivatives from the left
and from the right, respectively. It follows that is differentiable on the closed
interval if it is differentiable on and if the derivative from the right at 
and the derivative from the left at both exist.b

a!a, b"[a, b]
f

lim
x→c#   

f !x" ! f !c"
x ! c

lim
x→c!  

f !x" ! f !c"
x ! c

 

cf

$t → 0. " !
2
t2.

 " lim
$t→0  

!2
t!t # $t"

$t. " lim
$t→0  

!2$t
$t!t"!t # $t"

 " lim
$t→0  

2t ! 2!t # $t"
t!t # $t"

$t

f !t" " 2%t f !t # $t" " 2%!t # $t" " lim
$t→0  

2
t # $t

!
2
t

$t

 
dy
dt

" lim
$t→0  

f !t # $t" ! f !t"
$t

y " f !t",

y " 2%t.t

x

4

0
0

6

(1, 2)

y = −2t + 4

y = 2
t

x
c x

x − c

(c, f (c))

(x, f (x))

f (x) − f (c)

y

At the point the line 
is tangent to the graph of
Figure 2.9

y " 2% t.
y " !2t # 4!1, 2"

As approaches the secant line approaches
the tangent line.
Figure 2.10

c,x

Alternative form of derivativef%!c" " lim
x→c

 
f !x" ! f !c"

x ! c

TECHNOLOGY A graphing utility can be used to reinforce the result given in
Example 5. For instance, using the formula you know that the
slope of the graph of at the point is This implies that an
equation of the tangent line to the graph at is

or

as shown in Figure 2.9.

y " !2t # 4y ! 2 " !2!t ! 1"

!1, 2"
m " !2.!1, 2"y " 2%t

dy%dt " !2%t2,

Try It Exploration A Open Exploration

Editable Graph
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If a function is not continuous at it is also not differentiable at For
instance, the greatest integer function

is not continuous at and so it is not differentiable at (see Figure 2.11).
You can verify this by observing that

Derivative from the left

and

Derivative from the right

Although it is true that differentiability implies continuity (as shown in Theorem 2.1
on the next page), the converse is not true. That is, it is possible for a function to be
continuous at and not differentiable at Examples 6 and 7 illustrate this
possibility.

EXAMPLE 6 A Graph with a Sharp Turn

The function

shown in Figure 2.12 is continuous at But, the one-sided limits

Derivative from the left

and

Derivative from the right

are not equal. So, is not differentiable at and the graph of does not have a 
tangent line at the point 

EXAMPLE 7 A Graph with a Vertical Tangent Line

The function

is continuous at as shown in Figure 2.13. But, because the limit

is infinite, you can conclude that the tangent line is vertical at So, is not 
differentiable at 

From Examples 6 and 7, you can see that a function is not differentiable at a point
at which its graph has a sharp turn or a vertical tangent.

x " 0.
fx " 0.

 " &

 " lim
x→0

 
1

x2%3

 lim
x→0

 
f !x" ! f !0"

x ! 0
" lim

x→0
 
x1%3 ! 0

x

x " 0,

f !x" " x1%3

!2, 0".
fx " 2f

lim
x→2#

 
f !x" ! f !2"

x ! 2
" lim

x→2#
 ,x ! 2, ! 0

x ! 2
" 1

lim
x→2!

 
f !x" ! f !2"

x ! 2
" lim

x→2!
 ,x ! 2, ! 0

x ! 2
" !1

x " 2.

f !x" " ,x ! 2,

x " c.x " c

lim
x→0#   

f !x" ! f !0"
x ! 0

" lim
x→0#

 
-x. ! 0

x
" 0.

lim
x→0!

 
f !x" ! f !0"

x ! 0
" lim

x→0!
 
-x. ! 0

x
" &

x " 0x " 0,

f !x" " -x.

x " c.x " c,

f (x) = 

x

[[ ]]

1

2

1 2 3−1−2

−2

x

y

2

1

3

4321
x

m = −1

m = 1

f (x) = x − 2 

y

x
1

1

2−1

−1

−2

f (x) = x1/3

y

The greatest integer function is not differen-
tiable at because it is not continuous
at 
Figure 2.11

x " 0.
x " 0,

is not differentiable at because the
derivatives from the left and from the right
are not equal.
Figure 2.12

x " 2,f

is not differentiable at because 
has a vertical tangent at 
Figure 2.13

x " 0.
fx " 0,f

Editable Graph

Editable Graph

Try It Exploration A

Try It Exploration A

Open Exploration

Exploration B Exploration C
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Proof You can prove that is continuous at by showing that approaches
as To do this, use the differentiability of at and consider the

following limit.

Because the difference approaches zero as you can conclude that
So, is continuous at 

The following statements summarize the relationship between continuity and
differentiability.

1. If a function is differentiable at then it is continuous at So, differen-
tiability implies continuity.

2. It is possible for a function to be continuous at and not be differentiable at
So, continuity does not imply differentiability.x " c.

x " c

x " c.x " c,

x " c.flim
x→c  f !x" " f !c".

x → c,f !x" ! f !c"

 " 0

 " !0"# f%!c"$

 " /lim
x→c

 !x ! c"0/lim
x→c

 
f !x" ! f !c"

x ! c 0
 lim
x→c

 # f !x" ! f !c"$ " lim
x→c

 /!x ! c") f !x" ! f !c"
x ! c *0 

x " cfx → c.f !c"
f !x"x " cf

THEOREM 2.1 Differentiability Implies Continuity

If is differentiable at then is continuous at x " c.fx " c,f

TECHNOLOGY Some graphing
utilities, such as Derive, Maple,
Mathcad, Mathematica, and the TI-89,
perform symbolic differentiation. Others
perform numerical differentiation by
finding values of derivatives using the
formula

where is a small number such as
0.001. Can you see any problems with
this definition? For instance, using this
definition, what is the value of the
derivative of when x " 0?f !x" " ,x,

$x

f%!x" 1 f !x # $x" ! f !x ! $x"
2$x



The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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In Exercises 1 and 2, estimate the slope of the graph at the
points and 

1. (a) (b) 

2. (a) (b) 

In Exercises 3 and 4, use the graph shown in the figure. 
To print an enlarged copy of the graph, select the MathGraph
button.

3. Identify or sketch each of the quantities on the figure.

(a) and (b)

(c)

4. Insert the proper inequality symbol between the given
quantities.

(a)

(b)
f !4" ! f !1"

4 ! 1
 ! f"!1"

f !4" ! f !1"
4 ! 1

 ! 
f !4" ! f !3"

4 ! 3

!<  or  >"

y #
f !4" ! f !1"

4 ! 1
!x ! 1" $ f !1"

f !4" ! f !1"f !4"f !1"

x
1

1

2

2

3

3

5

5

4

4

6

6

(1, 2)

(4, 5)
f

y

y

x

(x1, y1)
(x2, y2)

y

x
(x1, y1)

(x2, y2)

y

x
(x1, y1)

(x2, y2)

y

x

(x1, y1)

(x2, y2)

#x2, y2$.#x1, y1$

E x e r c i s e s  f o r  S e c t i o n  2 . 1
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In Exercises 5 –10, find the slope of the tangent line to the graph
of the function at the given point.

5. 6.

7. 8.

9. 10.

In Exercises 11–24, find the derivative by the limit process.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–32, (a) find an equation of the tangent line to the
graph of at the given point, (b) use a graphing utility to graph
the function and its tangent line at the point, and (c) use the deriv-
ative feature of a graphing utility to confirm your results.

25.

26.

27. 28.

29. 30.

31. 32.

In Exercises 33–36, find an equation of the line that is tangent
to the graph of and parallel to the given line.

33.

34.

35.

36.

In Exercises 37–40, the graph of is given. Select the graph
of 

37. 38.

39. 40.

(a) (b)

(c) (d)

41. The tangent line to the graph of at the point 
passes through the point Find and 

42. The tangent line to the graph of at the point 
passes through the point Find and h"!!1".h!!1"!3, 6".

!!1, 4"y # h!x"
g"!5".g!5"!9, 0".

!5, 2"y # g!x"

3

1

2

3

x
1 22 1 33

f

y

3

1

2

2

3

x
1 22 33

f

y

2

2

3
4

x
1 22 1 33

f

y

1

2

3
4
5

x
1 21 3 4 5

f

y

2

3
4
5

x
1 22 1 33

f

y

1

2

3
4
5

x
1 21 3 4 5

f

y

1

2

3
4
5

x
1 22 1 33

f

y

3

1

2

2

3

x
1 22 33

f

y

f!.
f

x $ 2y $ 7 # 0f !x" #
1

%x ! 1

x $ 2y ! 6 # 0f !x" #
1
%x

3x ! y ! 4 # 0f !x" # x3 $ 2

3x ! y $ 1 # 0f !x" # x3

Line                    Function            

f

!0, 1"f !x" #
1

x $ 1
,!4, 5"f !x" # x $

4
x
,

!5, 2"f !x" # %x ! 1,!1, 1"f !x" # %x,

!1, 2"f !x" # x3 $ 1,!2, 8"f !x" # x3,

!!3, 4"f !x" # x2 $ 2x $ 1,

!2, 5"f !x" # x2 $ 1,

f

f !x" #
4
%x

f !x" # %x $ 1

f !x" #
1
x2f !x" #

1
x ! 1

f !x" # x3 $ x2f !x" # x3 ! 12x

f !x" # 1 ! x2f !x" # 2x2 $ x ! 1

f !x" # 9 ! 1
2xh!s" # 3 $ 2

3s

f !x" # 3x $ 2f !x" # !5x

g!x" # !5f !x" # 3

!!2, 7"h!t" # t 2 $ 3,!0, 0"f !t" # 3t ! t 2,

!2, 1"g!x" # 5 ! x2,!1, !3"g!x" # x2 ! 4,

!!2, !2"g!x" # 3
2 x $ 1,!!1, 5"f !x" # 3 ! 2x,

Writing About Concepts
In Exercises 43– 46, sketch the graph of Explain how you
found your answer.

43. 44.

45. 46.

47. Sketch a graph of a function whose derivative is always
negative.

y

x
1 2 3

2
3
4

6
7

1

4 5 6 7 8

f

y

x
1 2 3

2
3
4
5
6
7

1

1 4 5 6 7

f

y

x
2 424

2

6

f

y

x
1 2

2
1

2
2
3
4

6

4 5 6

f

f!.
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In Exercises 53 –55, identify a function that has the following
characteristics. Then sketch the function.

53. 54.

for 

for 

55. if 

56. Assume that Find if (a) is an odd function
and if (b) is an even function.

In Exercises 57 and 58, find equations of the two tangent lines
to the graph of that pass through the indicated point.

57. 58.

59. Graphical Reasoning The figure shows the graph of 

(a) (b)

(c) What can you conclude about the graph of knowing that

(d) What can you conclude about the graph of knowing that

(e) Is positive or negative? Explain.

(f) Is it possible to find from the graph? Explain.

60. Graphical Reasoning Use a graphing utility to graph each
function and its tangent lines at and 
Based on the results, determine whether the slopes of tangent
lines to the graph of a function at different values of are
always distinct.

(a) (b)

Graphical, Numerical, and Analytic Analysis In Exercises 61
and 62, use a graphing utility to graph on the interval 
Complete the table by graphically estimating the slopes of the
graph at the indicated points. Then evaluate the slopes analyti-
cally and compare your results with those obtained graphically.

61. 62.

Graphical Reasoning In Exercises 63 and 64, use a graphing
utility to graph the functions and in the same viewing
window where

Label the graphs and describe the relationship between them.

63. 64.

In Exercises 65 and 66, evaluate and and use the
results to approximate 

65. 66.

Graphical Reasoning In Exercises 67 and 68, use a graphing
utility to graph the function and its derivative in the same
viewing window. Label the graphs and describe the relationship
between them.

67. 68.

Writing In Exercises 69 and 70, consider the functions and
where

(a) Use a graphing utility to graph and in the same
viewing window for 0.5, and 0.1.

(b) Give a written description of the graphs of for the different
values of in part (a).

69. 70. f !x" # x $
1
x

f !x" # 4 ! !x ! 3"2

"x
S

"x # 1,
S"xf

S"x#x$ #
 f #2 $ "x$ % f #2$

"x
#x % 2$ $ f #2$.

S"x

f

f !x" #
x3

4
! 3xf !x" #

1
%x

f !x" # 1
4 x 3f !x" # x!4 ! x"

f!#2$.
f #2.1$f #2$

f !x" # 3%xf !x" # 2x ! x2

g#x$ #
 f #x $ 0.01$ % f #x$

0.01
.

gf

f !x" # 1
2x2f !x" # 1

4x3

[%2, 2].f

g!x" # x3f !x" # x2

x

x # 1.x # !1, x # 0,

g!2"
g!6" ! g!4"

g"!!4" # 7
3?

g

g"!1" # !8
3?

g

g"!3" # !g"!0" # !

x

g

46

4

6

6

6

4

4

2

y

g".

x
2 6

6
8

10

4

4

24

4

6
(1, 3)

y

1

2

3

4

5

x
1 2 3 5

(2, 5)

y

f !x" # x2f !x" # 4x ! x2

f

f
ff " !!c"f"!c" # 3.

x % 0f !0" # 0; f" !0" # 0; f" !x" > 0

x > 0f" !x" > 0

x < 0;f" !x" < 0f" !x" # !3, !& < x < &

f !0" # 4; f" !0" # 0;f !0" # 2;

f
x 0 0.5 1 1.5 2

f!#x$

f #x$

!0.5!1!1.5!2

Writing About Concepts (continued)
48. Sketch a graph of a function whose derivative is always

positive.

In Exercises 49–52, the limit represents for a function
and a number Find and 

49. 50.

51. 52. lim
x 9

 
2%x ! 6

x ! 9
lim
x 6

 
!x2 $ 36

x ! 6

lim
'x 0

 
!!2 $ 'x"3 $ 8

'x
lim

'x 0
 
&5 ! 3!1 $ 'x"' ! 2

'x

c.fc.f
f! #c$
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In Exercises 71–80, use the alternative form of the derivative to
find the derivative at (if it exists).

71. 72.

73.

74.

75.

76.

77.

78.

79. 80.

In Exercises 81– 86, describe the -values at which is
differentiable.

81. 82.

83. 84.

85. 86.

Graphical Analysis In Exercises 87–90, use a graphing utility
to find the -values at which is differentiable.

87. 88.

89.

90.

In Exercises 91–94, find the derivatives from the left and from
the right at (if they exist). Is the function differentiable at

91. 92.

93. 94.

In Exercises 95 and 96, determine whether the function is
differentiable at 

95. 96.

97. Graphical Reasoning A line with slope passes through
the point and has the equation 

(a) Write the distance between the line and the point 
as a function of 

(b) Use a graphing utility to graph the function in part (a).
Based on the graph, is the function differentiable at every
value of If not, where is it not differentiable?

98. Conjecture Consider the functions and 

(a) Graph and on the same set of axes.

(b) Graph and on the same set of axes.

(c) Identify a pattern between and and their respective
derivatives. Use the pattern to make a conjecture about

if where is an integer and 

(d) Find if Compare the result with the
conjecture in part (c). Is this a proof of your conjecture?
Explain.

True or False? In Exercises 99–102, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. The slope of the tangent line to the differentiable function at

the point is 

100. If a function is continuous at a point, then it is differentiable
at that point.

101. If a function has derivatives from both the right and the left at
a point, then it is differentiable at that point.

102. If a function is differentiable at a point, then it is continuous
at that point.

103. Let and

Show that is continuous, but not differentiable, at 
Show that is differentiable at 0, and find 

104. Writing Use a graphing utility to graph the two functions
and in the same viewing

window. Use the zoom and trace features to analyze the graphs
near the point What do you observe? Which function is
differentiable at this point? Write a short paragraph describing
the geometric significance of differentiability at a point.

!0, 1".

g!x" # (x( $ 1f !x" # x2 $ 1

g"!0".g
x # 0.f

g!x" # )x2 sin 1
          x

,

0,
    

x % 0

x # 0
.f !x" # )x sin 1

        x
,

0,
    

x % 0

x # 0

f !2 $ 'x" ! f !2"
'x

.!2, f !2""

f

f !x" # x4.f"!x"
n 2.nh!x" # xn,h"!x"

gf

g"g

f"f

g!x" # x3.f !x" # x2

m?

d

m.
!3, 1"d

y # mx $ 4.!0, 4"
m

f !x" # )
1
2x $ 1,
%2x ,

     x  <  2
     x    2

f #x$ # )x2 $ 1,
4x ! 3,

     x    2
     x  >  2

x # 2.

f !x" # )x,
x2,

     x 1
     x > 1

f !x" # )!x ! 1"3,
!x ! 1"2,

     x 1
     x > 1

f !x" # %1 ! x2f !x" # (x ! 1(
x # 1?

x # 1

f !x" # )x3 ! 3x2 $ 3x,
x2 ! 2x,

x 1
x > 1

f !x" # x2*5

f !x" #
2x

x ! 1
f !x" # (x $ 3(

fx

x

2

4

44

4

y

x
21 3 4

3

2

1

y

f !x" # )x2 ! 4,
4 ! x2,

     x 0
     x > 0

f !x" # %x ! 1

x

2
3

3

4

4

5

3

4

y

x
21 3 4 5 6

3

1

4

5

y

f !x" #
x2

x2 ! 4
f !x" # !x ! 3"2*3

x
42

4

2
4

4

2

6

10
12

y

x
2

2

1

1

1

y

f !x" # (x2 ! 9(f !x" #
1

x $ 1

fx

f !x" # (x ! 4(,   c # 4h!x" # (x $ 5(,   c # !5

g!x" # !x $ 3"1*3,   c # !3

f !x" # !x ! 6"2*3,   c # 6

f !x" # 1*x,    c # 3

g!x" # %(x(,   c # 0

f !x" # x3 $ 2x,   c # 1

f !x" # x3 $ 2x2 $ 1,   c # !2

g!x" # x!x ! 1",   c # 1f !x" # x2 ! 1,   c # 2

x # c
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Section 2.2 Basic Differentiation Rules and Rates of Change
• Find the derivative of a function using the Constant Rule.
• Find the derivative of a function using the Power Rule.
• Find the derivative of a function using the Constant Multiple Rule.
• Find the derivative of a function using the Sum and Difference Rules.
• Find the derivatives of the sine function and of the cosine function.
• Use derivatives to find rates of change.

The Constant Rule
In Section 2.1 you used the limit definition to find derivatives. In this and the next two
sections you will be introduced to several “differentiation rules” that allow you to find
derivatives without the direct use of the limit definition.

Proof Then, by the limit definition of the derivative,

EXAMPLE 1 Using the Constant Rule

a.

b.
c.
d. is constant

The editable graph feature below allows you to edit the graph of a function.

a. b.

c. d.

y! " 0y " k# 2, k

s!!t" " 0s!t" " $3

f!!x" " 0f !x" " 0

dy
dx

" 0y " 7

DerivativeFunction                          

 " 0.

 " lim
%x→0

 0

 " lim
%x→0  

c $ c
%x

 " lim
%x→0  

f !x & %x" $ f!x"
%x

 
d
dx

 #c$ " f!!x"

Let f !x" " c.

x

The slope of a 
horizontal line
is 0.

The derivative of a
constant function
is 0.

f (x) = c

y

NOTE In Figure 2.14, note that the
Constant Rule is equivalent to saying
that the slope of a horizontal line is 0.
This demonstrates the relationship
between slope and derivative.

The Constant Rule
Figure 2.14

THEOREM 2.2 The Constant Rule

The derivative of a constant function is 0. That is, if is a real number, then

d
dx

#c$ " 0.

c

E X P L O R A T I O N

Writing a Conjecture Use the definition of the derivative given in Section 2.1
to find the derivative of each function. What patterns do you see? Use your
results to write a conjecture about the derivative of 

a. b. c.
d. e. f. f !x" " x$1f !x" " x1%2f !x" " x4

f !x" " x3f !x" " x2f !x" " x1

f !x" " xn.

Video

Video Video

Video

Try It Exploration A

Editable Graph

Editable Graph

Editable Graph

Editable Graph
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The Power Rule
Before proving the next rule, it is important to review the procedure for expanding a
binomial.

The general binomial expansion for a positive integer is

is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

Proof If is a positive integer greater than 1, then the binomial expansion produces

This proves the case for which is a positive integer greater than 1. You will prove the
case for Example 7 in Section 2.3 proves the case for which is a negative
integer. In Exercise 75 in Section 2.5 you are asked to prove the case for which is
rational. (In Section 5.5, the Power Rule will be extended to cover irrational
values of )

When using the Power Rule, the case for which is best thought of as a
separate differentiation rule. That is,

This rule is consistent with the fact that the slope of the line is 1, as shown in
Figure 2.15.

y " x

n " 1

n.

n
nn " 1.

n

 " nxn$1.

 " nxn$1 & 0 & .  .  . & 0

 " lim
%x→0

 &nxn$1 &
n!n $ 1"xn$2

2
 !%x" & .  .  . & !%x"n$1'

 " lim
%x→0

 
xn & nxn$1!%x" &

n!n $ 1"xn$2

2
 !%x"2 & .  .  . & !%x"n $ xn

%x

 
d
dx

 #xn$ " lim
%x→0

 
!x & %x"n $ xn

%x

n

!%x"2

!x & %x"n " xn & nxn$1 !%x" &
n!n $ 1"xn$2

2
 !%x"2 & .  .  . & !%x"n.

n

!x & %x"3 " x3 & 3x2%x & 3x!%x"2 & !%x"3

!x & %x"2 " x2 & 2x%x & !%x"2

Power Rule when n " 1
d
dx

#x$ " 1.
x

y = x

y

1

1

2

3

4

2 3 4

The slope of the line is 1.
Figure 2.15

y " x

THEOREM 2.3 The Power Rule

If is a rational number, then the function is differentiable and

For to be differentiable at must be a number such that is
defined on an interval containing 0.

xn$1nx " 0,f

d
dx

#xn$ " nxn$1.

f !x" " xnn
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EXAMPLE 2 Using the Power Rule

a.

b.

c.

In Example 2(c), note that before differentiating, was rewritten as 
Rewriting is the first step in many differentiation problems.

EXAMPLE 3 Finding the Slope of a Graph

Find the slope of the graph of when

a. b. c.

Solution The slope of a graph at a point is the value of the derivative at that point.
The derivative of is 

a. When the slope is Slope is negative.

b. When the slope is Slope is zero.

c. When the slope is Slope is positive.

See Figure 2.16.

EXAMPLE 4 Finding an Equation of a Tangent Line

Find an equation of the tangent line to the graph of when 

Solution To find the point on the graph of evaluate the original function at

Point on graph

To find the slope of the graph when evaluate the derivative, at

Slope of graph at 

Now, using the point-slope form of the equation of a line, you can write

Point-slope form

Substitute for and 

Simplify.

See Figure 2.17.

 y " $4x $ 4.

x1.m,y1, y $ 4 " $4#x $ !$2"$
 y $ y1 " m!x $ x1"

!$2, 4"m " f!!$2" " $4

x " $2.
f!!x" " 2x,x " $2,

!$2, f !$2"" " !$2, 4"

x " $2.
f,

x " $2.f !x" " x2

f!!1" " 4!1"3 " 4.x " 1,

f!!0" " 4!0"3 " 0.x " 0,

f!!$1" " 4!$1"3 " $4.x " $1,

f!!x" " 4x3.f

x " 1.x " 0x " $1

f !x" " x4

x$2.1%x2

dy
dx

"
d
dx

 #x$2$ " !$2"x$3 " $
2
x3y "

1
x2

g!!x" "
d
dx

 #x1%3$ "
1
3

 x$2%3 "
1

3x2%3g!x" " 3(x

f!!x) " 3x2f !x" " x3

Derivative                                                 Function     

x

2

1

−1 1

(1, 1)

(0, 0)

(−1, 1)

f (x) = x4

y

x
−2 1 2

4

3

2

1

f (x) = x2

y = −4x − 4

(−2, 4)

y

Note that the slope of the graph is negative
at the point the slope is zero at the
point and the slope is positive at the
point 
Figure 2.16

!1, 1".
!0, 0",

!$1, 1",

The line is tangent to the
graph of at the point 
Figure 2.17

!$2, 4".f !x" " x2
y " $4x $ 4

Given:

y "
1
x2

Rewrite:

y " x$2

Differentiate:
dy
dx

" !$2"x$3

Simplify:
dy
dx

" $
2
x3

Try It Exploration A

Try It Exploration A

Try It Exploration A

Open Exploration

Open ExplorationExploration BEditable Graph

Editable Graph
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The Constant Multiple Rule

Proof

Definition of derivative

Apply Theorem 1.2.

Informally, the Constant Multiple Rule states that constants can be factored out
of the differentiation process, even if the constants appear in the denominator.

EXAMPLE 5 Using the Constant Multiple Rule

a.

b.

c.

d.

e.

The Constant Multiple Rule and the Power Rule can be combined into one rule. The
combination rule is

y! "
d
dx &$

3
2

 x' " $
3
2

!1" " $
3
2

y " $
3x
2

dy
dx

"
d
dx &

1
2

 x$2%3' "
1
2 )$

2
3* x$5%3 " $

1
3x5%3y "

1
2 3(x2

dy
dx

"
d
dx

#2x1%2$ " 2)1
2

x$1%2* " x$1%2 "
1
(x

y " 2(x

f!!t" "
d
dt &

4
5

t2' "
4
5

 
d
dt

#t2$ "
4
5

!2t" "
8
5

 tf!t" "
4t2

5

dy
dx

"
d
dx

#2x$1$ " 2 d
dx

#x$1$ " 2!$1"x$2 " $
2
x2y "

2
x

Derivative                                                                          Function     

 " )1
c* 

d
dx

 #       f !x"$ " )1
c* f!!x"

 
d
dx

 & f !x"
c ' "

d
dx

 &)1
c* f !x"'

 
d
dx

 #cf !x"$ " c 
d
dx

 #      f !x"$ " cf!!x"

 " cf!!x"

 " c & lim
%x→0

 
f !x & %x" $ f !x"

%x ' 

 " lim
%x→0

 c& f !x & %x" $ f !x"
%x ' 

 
d
dx

 #cf!x"$ " lim
%x→0

 
cf!x & %x" $ cf!x"

%x
 

THEOREM 2.4 The Constant Multiple Rule

If is a differentiable function and is a real number, then is also

differentiable and 
d
dx

#cf!x"$ " cf!!x".

cfcf

Dx #cx n$ " cnx n$1.

Try It Exploration A
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EXAMPLE 6 Using Parentheses When Differentiating

a.

b.

c.

d.

The Sum and Difference Rules

Proof A proof of the Sum Rule follows from Theorem 1.2. (The Difference Rule
can be proved in a similar way.)

The Sum and Difference Rules can be extended to any finite number of functions.
For instance, if then 

EXAMPLE 7 Using the Sum and Difference Rules

a.

b.

The editable graph feature below allows you to edit the graph of a function and
its derivative.

g!!x" " $2x3 & 9x2 $ 2g!x" " $
x4

2
& 3x3 $ 2x

f!!x" " 3x2 $ 4f !x" " x3 $ 4x & 5

Derivative                             Function                              

F!!x" " f!!x" & g!!x" $ h!!x".F!x" " f !x" & g!x" $ h!x",

 " f!!x" & g!!x"

 " lim
%x→0

   
f !x & %x" $ f !x"

%x
& lim

%x→0  
g!x & %x" $ g!x"

%x

 " lim
%x→0

  & f !x & %x" $ f !x"
%x

&
g!x & %x" $ g!x"

%x '
 " lim

%x→0
  

f !x & %x" & g!x & %x" $ f !x" $ g!x"
%x

 
d
dx

 # f !x" & g!x"$ " lim
%x→0

 
# f !x & %x" & g!x & %x"$ $ # f !x" & g!x"$

%x

y! " 126xy! " 63!2x"y " 63!x2"y "
7

!3x"$2

y! "
14x
3

y! "
7
3

!2x"y "
7
3

!x2"y "
7

3x$2

y! " $
15
8x4y! "

5
8

!$3x$4"y "
5
8

!x$3"y "
5

!2x"3

y! " $
15
2x4y! "

5
2

!$3x$4"y "
5
2

!x$3"y "
5

2x3

Simplify       Differentiate        Rewrite         Original Function

THEOREM 2.5 The Sum and Difference Rules

The sum (or difference) of two differentiable functions and is itself
differentiable. Moreover, the derivative of or is the sum (or
difference) of the derivatives of and 

Sum Rule

Difference Rule
d
dx

# f !x" $ g!x"$ " f!!x" $ g!!x"

d
dx

# f !x" & g!x"$ " f!!x" & g!!x"

g.f
f $ g"!f & g

gf
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Derivatives of Sine and Cosine Functions
In Section 1.3, you studied the following limits.

and

These two limits can be used to prove differentiation rules for the sine and cosine
functions. (The derivatives of the other four trigonometric functions are discussed in
Section 2.3.)

Proof

Definition of derivative

This differentiation rule is shown graphically in Figure 2.18. Note that for each the
of the sine curve is equal to the value of the cosine. The proof of the second rule

is left as an exercise (see Exercise 116).

EXAMPLE 8 Derivatives Involving Sines and Cosines

a.

b.

c. y! " 1 $ sin xy " x & cos x

y! "
1
2

 cos x "
cos x

2
y "

sin x
2

"
1
2

 sin x

y! " 2 cos xy " 2 sin x

Derivative                     Function                     

slope
x,

 " cos x

 " !cos x"!1" $ !sin x"!0"

 " cos x) lim
%x→0

 
sin %x

%x * $ sin x) lim
%x→0

 
1 $ cos %x

%x * 

 " lim
%x→0

 &!cos x" )sin %x
%x * $ !sin x")1 $ cos %x

%x *' 

 " lim
%x→0

 
cos x sin %x $ !sin x"!1 $ cos %x"

%x
 

 " lim
%x→0  

sin x cos %x & cos x sin %x $ sin x
%x

 
d
dx

 #sin x$ " lim
%x→0

 
sin!x & %x" $ sin x

%x
 

lim
%x→0

 
1 $ cos %x

%x
" 0lim

%x→0
 
sin %x

%x
" 1

FOR FURTHER INFORMATION For the
outline of a geometric proof of the deriv-
atives of the sine and cosine functions,
see the article “The Spider’s Spacewalk
Derivation of and ” by Tim
Hesterberg in The College Mathematics
Journal. 

cos!sin!

x

1

−1

π2π
2

π

y increasing y increasingy decreasing

y ′ = 0

y ′ = −1

y ′ = 0

y ′ = 1

y ′ = 1

y = sin x
y

−2

2

y = sin x

y = 2 sin x

1
2

3
2

##−

y =     sin x

y =     sin x

x

y

−1

π2π
2

π

y ′ = cos x

y ′ positive y ′ positivey ′ negative

The derivative of the sine function is the
cosine function.
Figure 2.18

Figure 2.19

d
dx

#a sin x$ " a cos x

THEOREM 2.6 Derivatives of Sine and Cosine Functions

d
dx

#cos x$ " $sin x
d
dx

#sin x$ " cos x

TECHNOLOGY A graphing utility can provide insight into the interpretation
of a derivative. For instance, Figure 2.19 shows the graphs of

for 1, and 2. Estimate the slope of each graph at the point Then
verify your estimates analytically by evaluating the derivative of each function
when x " 0.

!0, 0".3
2,a " 1

2,

y " a sin x

MathArticle

Animation
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Rates of Change
You have seen how the derivative is used to determine slope. The derivative can also be
used to determine the rate of change of one variable with respect to another. Applications
involving rates of change occur in a wide variety of fields. A few examples are
population growth rates, production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving
in a straight line. In such problems, it is customary to use either a horizontal or a
vertical line with a designated origin to represent the line of motion. On such lines,
movement to the right (or upward) is considered to be in the positive direction, and
movement to the left (or downward) is considered to be in the negative direction.

The function that gives the position (relative to the origin) of an object as a
function of time is called a position function. If, over a period of time the object
changes its position by the amount then, by the familiar
formula

the average velocity is

Average velocity

EXAMPLE 9 Finding Average Velocity of a Falling Object

If a billiard ball is dropped from a height of 100 feet, its height at time is given by
the position function

Position function

where is measured in feet and is measured in seconds. Find the average velocity
over each of the following time intervals.

a. b. c.

Solution

a. For the interval the object falls from a height of 
feet to a height of feet. The average velocity is

feet per second.

b. For the interval the object falls from a height of 84 feet to a height of 64
feet. The average velocity is

feet per second.

c. For the interval the object falls from a height of 84 feet to a height of 80.64
feet. The average velocity is

feet per second.

Note that the average velocities are indicating that the object is moving
downward.

negative,

%s
%t

"
80.64 $ 84

1.1 $ 1
"

$3.36
0.1

" $33.6

#1, 1.1$,

%s
%t

"
64 $ 84
1.5 $ 1

"
$20
0.5

" $40

#1, 1.5$,

%s
%t

"
36 $ 84
2 $ 1

"
$48

1
" $48

s!2" " $16!2"2 & 100 " 36
s!1" " $16!1"2 & 100 " 84#1, 2$,

#1, 1.1$#1, 1.5$#1, 2$

ts

s " $16t2 & 100

ts

Rate "
distance

time

%s " s!t & %t" $ s!t",
%t,t

s

Change in distance
Change in time

"
%s
%t

.
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Suppose that in Example 9 you wanted to find the instantaneous velocity (or
simply the velocity) of the object when Just as you can approximate the slope
of the tangent line by calculating the slope of the secant line, you can approximate the
velocity at by calculating the average velocity over a small interval 
(see Figure 2.20). By taking the limit as approaches zero, you obtain the velocity
when Try doing this—you will find that the velocity when is feet
per second.

In general, if is the position function for an object moving along a
straight line, the velocity of the object at time is

Velocity function

In other words, the velocity function is the derivative of the position function. Velocity
can be negative, zero, or positive. The speed of an object is the absolute value of its
velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence
of gravity can be represented by the equation

where is the initial height of the object, is the initial velocity of the object, and 
is the acceleration due to gravity. On Earth, the value of is approximately feet
per second per second or meters per second per second.

EXAMPLE 10 Using the Derivative to Find Velocity

At time a diver jumps from a platform diving board that is 32 feet above the
water (see Figure 2.21). The position of the diver is given by

Position function

where is measured in feet and is measured in seconds.

a. When does the diver hit the water?

b. What is the diver’s velocity at impact?

Solution

a. To find the time when the diver hits the water, let and solve for .

Set position function equal to 0.

Factor.

Solve for 

Because choose the positive value to conclude that the diver hits the water
at seconds.

b. The velocity at time is given by the derivative So, the
velocity at time is

feet per second.s!!2" " $32!2" & 16 " $48

t " 2
s!!t" " $32t & 16.t

t " 2
t ≥ 0,

t. t " $1 or 2

 $16!t & 1"!t $ 2" " 0

 $16t2 & 16t & 32 " 0

ts " 0t

ts

s!t" " $16t2 & 16t & 32

t " 0,

$9.8
$32g

gv0s0

t
s " s!t"

$32t " 1t " 1.
%t

#1, 1 & %t$t " 1

t " 1.

t

Secant line

Tangent lineP

t1 = 1 t2

s

t

32 ft

The average velocity between and is
the slope of the secant line, and the
instantaneous velocity at is the slope of
the tangent line.
Figure 2.20

t1

t2t1

Velocity is positive when an object is rising,
and is negative when an object is falling.
Figure 2.21

NOTE In Figure 2.21, note that the
diver moves upward for the first half-
second because the velocity is positive
for When the velocity is 0,
the diver has reached the maximum
height of the dive.

0 < t < 1
2.

v!t" " lim
%t→0

 
s!t & %t" $ s!t"

%t
" s!!t".

Position functions!t" "
1
2

 gt2 & v0t & s0

Animation

Animation

History
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The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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E x e r c i s e s  f o r  S e c t i o n  2 . 2

In Exercises 1 and 2, use the graph to estimate the slope of the
tangent line to at the point Verify your answer
analytically. To print an enlarged copy of the graph, select the
MathGraph button.

1. (a) (b)

2. (a) (b)

In Exercises 3 –24, find the derivative of the function.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, complete the table.

25.

26.

27.

28.

29.

30.

In Exercises 31–38, find the slope of the graph of the function at
the given point. Use the derivative feature of a graphing utility
to confirm your results.

31.

32.

33.

34.

35.

36.

37.

38.

In Exercises 39–52, find the derivative of the function.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

In Exercises 53–56, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of a graphing utility to confirm your
results.

53.

54.

55.

56. !1, 6"y ! !x 2 " 2x"!x " 1"

!1, 2"f !x" !
   2   

4#x3

!#1, #2"y ! x 3 " x

!1, 0"y ! x 4 # 3x 2 " 2

Point       Function                     

f

f !x" !
2

3#x
" 3 cos xf !x" ! 6#x " 5 cos x

f !t" ! t2$3 # t1$3 " 4h!s" ! s4$5 # s2$3

f !x" !  3#x " 5#xf !x" ! #x # 6 3#x

y ! 3x!6x # 5x2"y ! x!x2 " 1"

h!x" !
2x2 # 3x " 1

x
f !x" !

x3 # 3x2 " 4
x2

f !x" ! x "
1
x 2g!t" ! t 2 #

4
t3

f !x" ! x2 # 3x # 3x#2f !x" ! x2 " 5 # 3x #2

!$, #1"g!t" ! 2 " 3 cos t

!0, 0"f !%" ! 4 sin % # %

!5, 0"f !x" ! 3!5 # x"2

!0, 1"y ! !2x " 1"2

!2, 18"y ! 3x3 # 6

!0, #1
2"f !x" ! #1

2 " 7
5x3

!3
5, 2"f !t" ! 3 #

3
5t

!1, 3"f !x" !
3
x2

Point    Function                 

y !
4

x#3

y !
#x
x

SimplifyDifferentiateRewriteOriginal Function

y !
$

!3x" 2

y !
3

!2x" 3

y !
2

3x 2

y !
5

2x2

SimplifyDifferentiateRewriteOriginal Function

y !
5

!2x"3 " 2 cos xy !
1
x

# 3 sin x

y ! 5 " sin xy ! x2 # 1
2 cos x

g!t" ! $ cos ty !
$
2

 sin % # cos %
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y ! 8 # x3g!x" ! x 2 " 4x3
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y !
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x8y !

1
x7

y ! x 8y ! x6
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1 2
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1
(1, 1)
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1 2 3
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1
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1 2

2

1 (1, 1)
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1 2
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1
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y
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In Exercises 57–62, determine the point(s) (if any) at which the
graph of the function has a horizontal tangent line.

57.

58.

59.

60.

61.

62.

In Exercises 63–66, find such that the line is tangent to the
graph of the function.

63.

64.

65.

66.

73. Sketch the graphs of and and
sketch the two lines that are tangent to both graphs. Find
equations of these lines.

74. Show that the graphs of the two equations and 
have tangent lines that are perpendicular to each other at their
point of intersection.

75. Show that the graph of the function

does not have a horizontal tangent line.

76. Show that the graph of the function

does not have a tangent line with a slope of 3.

In Exercises 77 and 78, find an equation of the tangent line to
the graph of the function through the point not on the
graph. To find the point of tangency on the graph of ,
solve the equation

77. 78.

79. Linear Approximation Use a graphing utility, with a square
window setting, to zoom in on the graph of

to approximate Use the derivative to find 

80. Linear Approximation Use a graphing utility, with a square
window setting, to zoom in on the graph of

to approximate Use the derivative to find f&!4".f&!4".

f !x" ! 4#x " 1

f&!1".f&!1".

f !x" ! 4 # 1
2 x2

!x0, y0" ! !5, 0"!x0, y0" ! !#4, 0"

f !x" !
2
x

f !x" ! #x

f"&x' !
y0 # y
x0 # x

.

f&x, y'
&x0, y0'f

f !x" ! x5 " 3x3 " 5x

f !x" ! 3x " sin x " 2

y ! 1$xy ! x

#x2 " 6x # 5,y !y ! x 2

y ! x " 4f !x" ! k#x

y ! #
3
4

x " 3f !x" !
k
x

y ! #4x " 7f !x" ! k # x2

y ! 4x # 9f !x" ! x2 # kx

Line               Function                     

k

0 x < 2$y ! #3x " 2 cos x,

0 x < 2$y ! x " sin x,

y ! x 2 " 1

y !
1
x 2

y ! x 3 " x

y ! x 4 # 8x 2 " 2

Writing About Concepts
67. Use the graph of to answer each question. To print

an enlarged copy of the graph, select the MathGraph button.

(a) Between which two consecutive points is the average
rate of change of the function greatest?

(b) Is the average rate of change of the function between 
and greater than or less than the instantaneous rate of
change at 

(c) Sketch a tangent line to the graph between and such
that the slope of the tangent line is the same as the
average rate of change of the function between and 

68. Sketch the graph of a function such that for all 
and the rate of change of the function is decreasing.

In Exercises 69 and 70, the relationship between and is
given. Explain the relationship between and 

69.

70. g!x" ! #5 f !x"
g!x" ! f !x" " 6

g".f"
gf

xf& > 0f

D.C

DC

B?
B

A

x

f

CC
AA

BB

ED E

y

f

Writing About Concepts (continued)
In Exercises 71 and 72, the graphs of a function and its
derivative are shown on the same set of coordinate axes.
Label the graphs as or and write a short paragraph
stating the criteria used in making the selection. To print
an enlarged copy of the graph, select the MathGraph button.

71. 72.

x
2 1 1 2 3 4

1
2

y

x
3 2

2

1 1 2 3

3

1

y

f"f
f"
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81. Linear Approximation Consider the function 
with the solution point 

(a) Use a graphing utility to graph Use the feature to
obtain successive magnifications of the graph in the neigh-
borhood of the point After zooming in a few times,
the graph should appear nearly linear. Use the feature
to determine the coordinates of a point near Find an
equation of the secant line through the two points.

(b) Find the equation of the line

tangent to the graph of passing through the given point.
Why are the linear functions and nearly the same?

(c) Use a graphing utility to graph and on the same set of
coordinate axes. Note that is a good approximation of 
when is close to 4. What happens to the accuracy of the
approximation as you move farther away from the point of
tangency?

(d) Demonstrate the conclusion in part (c) by completing the
table.

82. Linear Approximation Repeat Exercise 81 for the function
where is the line tangent to the graph at the point

Explain why the accuracy of the linear approximation
decreases more rapidly than in Exercise 81.

True or False? In Exercises 83–88, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83. If then 

84. If then 

85. If then 

86. If then 

87. If then 

88. If then 

In Exercises 89–92, find the average rate of change of the func-
tion over the given interval. Compare this average rate of
change with the instantaneous rates of change at the endpoints
of the interval.

89. 90.

91. 92.

Vertical Motion In Exercises 93 and 94, use the position
function for free-falling objects.

93. A silver dollar is dropped from the top of a building that is 1362
feet tall.

(a) Determine the position and velocity functions for the coin.

(b) Determine the average velocity on the interval 

(c) Find the instantaneous velocities when and 

(d) Find the time required for the coin to reach ground level.

(e) Find the velocity of the coin at impact.

94. A ball is thrown straight down from the top of a 220-foot
building with an initial velocity of feet per second. What
is its velocity after 3 seconds? What is its velocity after falling
108 feet?

Vertical Motion In Exercises 95 and 96, use the position func-
tion for free-falling objects.

95. A projectile is shot upward from the surface of Earth with an
initial velocity of 120 meters per second. What is its velocity
after 5 seconds? After 10 seconds?

96. To estimate the height of a building, a stone is dropped from the
top of the building into a pool of water at ground level. How
high is the building if the splash is seen 6.8 seconds after the
stone is dropped?

Think About It In Exercises 97 and 98, the graph of a position
function is shown. It represents the distance in miles that a
person drives during a 10-minute trip to work. Make a sketch
of the corresponding velocity function.

97. 98.

Think About It In Exercises 99 and 100, the graph of a velocity
function is shown. It represents the velocity in miles per hour
during a 10-minute drive to work. Make a sketch of the corre-
sponding position function.

99. 100.
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101. Modeling Data The stopping distance of an automobile, on
dry, level pavement, traveling at a speed (kilometers per
hour) is the distance (meters) the car travels during the
reaction time of the driver plus the distance (meters) the car
travels after the brakes are applied (see figure). The table
shows the results of an experiment.

(a) Use the regression capabilities of a graphing utility to find
a linear model for reaction time distance.

(b) Use the regression capabilities of a graphing utility to find
a quadratic model for braking distance.

(c) Determine the polynomial giving the total stopping
distance 

(d) Use a graphing utility to graph the functions and 
in the same viewing window.

(e) Find the derivative of and the rates of change of the total
stopping distance for and 

(f) Use the results of this exercise to draw conclusions about
the total stopping distance as speed increases.

102. Fuel Cost A car is driven 15,000 miles a year and gets 
miles per gallon. Assume that the average fuel cost is $1.55
per gallon. Find the annual cost of fuel as a function of 
and use this function to complete the table.

Who would benefit more from a one-mile-per-gallon increase
in  fuel efficiency—the driver of a car that gets 15 miles per
gallon or the driver of a car that gets 35 miles per gallon?
Explain.

103. Volume The volume of a cube with sides of length is given
by Find the rate of change of the volume with respect
to when centimeters.

104. Area The area of a square with sides of length is given by
Find the rate of change of the area with respect to 

when meters.

105. Velocity Verify that the average velocity over the time
interval is the same as the instantaneous
velocity at for the position function

106. Inventory Management The annual inventory cost for a
manufacturer is

where is the order size when the inventory is replenished.
Find the change in annual cost when is increased from 350
to 351, and compare this with the instantaneous rate of change
when 

107. Writing The number of gallons of regular unleaded
gasoline sold by a gasoline station at a price of dollars per
gallon is given by 

(a) Describe the meaning of 

(b) Is usually positive or negative? Explain.

108. Newton’s Law of Cooling This law states that the rate of
change of the temperature of an object is proportional to the
difference between the object’s temperature and the
temperature of the surrounding medium. Write an equation
for this law.

109. Find an equation of the parabola that passes
through and is tangent to the line at 

110. Let be an arbitrary point on the graph of 
Prove that the area of the triangle formed by the

tangent line through and the coordinate axes is 2.

111. Find the tangent line(s) to the curve through the
point 

112. Find the equation(s) of the tangent line(s) to the parabola
through the given point.

(a) (b)

Are there any restrictions on the constant 

In Exercises 113 and 114, find and such that is differen-
tiable everywhere.

113.

114.

115. Where are the functions and 
differentiable?

116. Prove that 

FOR FURTHER INFORMATION For a geometric interpretation of
the derivatives of trigonometric functions, see the article “Sines
and Cosines of the Times” by Victor J. Katz in Math Horizons.

d
dx

 (cos x) ! #sin x.

f2!x" ! sin ,x,f1!x" ! ,sin x,

f !x" ! -cos x,

ax " b,     

x < 0

x 0

f !x" ! -ax3,

x2 " b,     

x 2

x > 2

fba

a?

!a, 0"!0, a"
y ! x2

!1, #9".
y ! x3 # 9x

!a, b"
x > 0.

y ! 1$x,!a, b"
!1, 0".y ! x # 1!0, 1"

y ! ax2 " bx " c

Ta

T

f&!1.479"
f&!1.479".

N ! f ! p".
p

N

Q ! 350.

Q
Q

C !
1,008,000

Q
" 6.3Q

C

s!t" ! #1
2at 2 " c.

t ! t0

(t0 # (t, t0 " (t)

s ! 4
sA ! s2.

s

s ! 4s
V ! s3.

s

xC

x

v ! 100.v ! 80,v ! 40,
T

TR, B,

T.

Driver sees
obstacle

Driver applies
brakes

Car
stops

R B

Reaction
time

Braking
distance

B
R

v

Speed, v 20 40 60 80 100

Reaction Time
8.3 16.7 25.0 33.3 41.7Distance, R

Braking Time
2.3 9.0 20.2 35.8 55.9Distance, B

MathArticle

x 10 15 20 25 30 35 40

C

dC/dx
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Section 2.3 Product and Quotient Rules and Higher-Order Derivatives
• Find the derivative of a function using the Product Rule.
• Find the derivative of a function using the Quotient Rule.
• Find the derivative of a trigonometric function.
• Find a higher-order derivative of a function.

The Product Rule
In Section 2.2 you learned that the derivative of the sum of two functions is simply
the sum of their derivatives. The rules for the derivatives of the product and quotient
of two functions are not as simple.

Proof Some mathematical proofs, such as the proof of the Sum Rule, are straight-
forward. Others involve clever steps that may appear unmotivated to a reader. This
proof involves such a step—subtracting and adding the same quantity—which is
shown in color.

Note that because is given to be differentiable and therefore

is continuous.
The Product Rule can be extended to cover products involving more than two

factors. For example, if and are differentiable functions of then

For instance, the derivative of is

 ! 2x sin x cos x " x2!cos2x # sin2x".

 
dy
dx

! 2x sin x cos x " x2 cos x cos x " x2 sin x!#sin x"

y ! x2 sin x cos x

d
dx

# f!x"g!x"h!x"$ ! f$!x"g!x"h!x" " f!x"g$!x"h!x" " f!x"g!x"h$!x".

x,hg,f,

flim
%x→0

 f !x " %x" ! f !x"

 ! f!x"g$!x" " g!x"f$!x"

 ! lim
%x→0

  f!x " %x" & lim
%x→0

 
g!x " %x" # g!x"

%x
" lim

%x→0
 g!x" & lim

%x→0
 
f!x " %x" # f!x"

%x

 ! lim
%x→0

  %f!x " %x"g!x " %x" # g!x"
%x & " lim

%x→0
 %g!x" f!x " %x" # f !x"

%x &
 ! lim

%x→0
 %f!x " %x"g!x " %x" # g!x"

%x
" g!x" f!x " %x" # f!x"

% x &
 ! lim

%x→0
  

f!x " %x"g!x " %x" # f!x " %x"g!x" " f!x " %x"g!x" # f!x"g!x"
%x

 
d
dx

# f!x"g!x"$ ! lim
%x→0

 
f!x " %x"g!x " %x" # f!x"g!x"

% x

THE PRODUCT RULE

When Leibniz originally wrote a formula for
the Product Rule, he was motivated by the
expression 

from which he subtracted (as being
negligible) and obtained the differential form

This derivation resulted in the
traditional form of the Product Rule.
(Source:The History of Mathematics by David
M. Burton) 

x dy " y dx.

dx dy

!x " dx"! y " dy" # xy

THEOREM 2.7 The Product Rule

The product of two differentiable functions and is itself differentiable.
Moreover, the derivative of is the first function times the derivative of the
second, plus the second function times the derivative of the first.

d
dx

# f!x"g!x"$ ! f!x"g$!x" " g!x" f$!x"

fg
gfNOTE A version of the Product Rule

that some people prefer is

The advantage of this form is that it
generalizes easily to products involving
three or more factors.

d
dx

# f !x"g!x"$ ! f$!x"g!x" " f !x"g$!x".

Video
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The derivative of a product of two functions is not (in general) given by the product
of the derivatives of the two functions. To see this, try comparing the product of the
derivatives of and with the derivative in Example 1.

EXAMPLE 1 Using the Product Rule

Find the derivative of 

Solution
Derivative Derivative

First of second Second of first

Apply Product Rule.

In Example 1, you have the option of finding the derivative with or without the
Product Rule. To find the derivative without the Product Rule, you can write

In the next example, you must use the Product Rule.

EXAMPLE 2 Using the Product Rule

Find the derivative of 

Solution

Apply Product Rule.

The editable graph feature below allows you to edit the graph of a function and
its derivative.

EXAMPLE 3 Using the Product Rule

Find the derivative of 

Solution
Product Rule Constant Multiple Rule

 ! #2x sin x

 ! !2x"!#sin x" " !cos x"!2" # 2!cos x"

 
dy
dx

! !2x"' d
dx

#cos x$( " !cos x"' d
dx

#2x$( # 2 
d
dx

#sin x$

y ! 2x cos x # 2 sin x.

 ! 3x!x cos x " 2 sin x"
 ! 3x2 cos x " 6x sin x

 ! 3x2 cos x " !sin x"!6x"

 
d
dx

#3x2 sin x$ ! 3x2 
d
dx

#sin x$ " sin x 
d
dx

#3x2$

y ! 3x2 sin x.

 ! #24x2 " 4x " 15.

 Dx #!3x # 2x2"!5 " 4x"$ ! Dx##8x3 " 2x2 " 15x$

 ! #24x2 " 4x " 15

 ! !12x # 8x2" " !15 # 8x # 16x2"
 ! !3x # 2x2"!4" " !5 " 4x"!3 # 4x"

 h$!x" ! !3x # 2x2" d
dx

#5 " 4x$ " !5 " 4x" d
dx

#3x # 2x2$

h!x" ! !3x # 2x2"!5 " 4x".

g!x" ! 5 " 4xf!x" ! 3x # 2x2

NOTE In Example 3, notice that you
use the Product Rule when both factors
of the product are variable, and you use
the Constant Multiple Rule when one of
the factors is a constant.

Try It Exploration A

Try It Exploration A Technology

Try It Exploration A Technology

Editable Graph
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The Quotient Rule

Proof As with the proof of Theorem 2.7, the key to this proof is subtracting and
adding the same quantity.

Definition of derivative

Note that because is given to be differentiable and therefore
is continuous.

EXAMPLE 4 Using the Quotient Rule

Find the derivative of 

Solution

Apply Quotient Rule.

The editable graph feature below allows you to edit the graph of a function and
its derivative.

 !
#5x2 " 4x " 5

!x2 " 1"2

 !
!5x2 " 5" # !10x2 # 4x"

!x2 " 1"2

 !
!x2 " 1"!5" # !5x # 2"!2x"

!x2 " 1"2

 
d
dx %

5x # 2
x2 " 1& !

 !x2 " 1" d
dx

#5x # 2$ # !5x # 2" d
dx

#x2 " 1$

!x2 " 1"2

y !
5x # 2
x2 " 1

.

glim
%x→0

 g!x " %x" ! g!x"

 !
g!x" f$!x" # f!x"g$!x"

#g!x"$2

 !
g!x"% lim

%x→0
 
f!x " %x" # f!x"

%x & # f!x"% lim
%x→0

 
g!x " %x" # g!x"

%x &
lim

%x→0
 #g!x"g!x " %x"$

 !
lim

%x→0
 
g!x"# f!x " % x" # f!x"$

%x
# lim

%x→0
 
f!x"#g!x " %x" # g!x"$

%x
lim

%x→0
 #g!x"g!x " %x"$  

 ! lim
%x→0

 
g!x"f!x " %x" # f!x"g!x" " f!x"g!x" # f!x"g!x " %x"

%xg!x"g!x " %x"  

 ! lim
%x→0

 
g!x" f!x " %x" # f!x"g!x " %x"

%xg!x"g!x " %x"  

 
d

dx%
f!x"
g!x"& ! lim

%x→0
 

f!x " %x"
g!x " %x" #

f!x"
g!x"

%x
 

Graphical comparison of a function and
its derivative
Figure 2.22

−7

−4

8

6

y = 5x − 2
x2 + 1

y ′ = −5x2 + 4x + 5
(x2 + 1)2

THEOREM 2.8 The Quotient Rule

The quotient of two differentiable functions and is itself differentiable 
at all values of for which Moreover, the derivative of is given 
by the denominator times the derivative of the numerator minus the numerator
times the derivative of the denominator, all divided by the square of the
denominator.

g!x" ' 0
d

dx%
f!x"
g!x"& !

g!x" f$!x" # f!x"g$!x"
#g!x"$2 ,

f)gg!x" ' 0.x
gff)g

TECHNOLOGY A graphing
utility can be used to compare the
graph of a function with the graph
of its derivative. For instance, in
Figure 2.22, the graph of the function
in Example 4 appears to have two
points that have horizontal tangent
lines. What are the values of at
these two points?

y$

Video

Try It Exploration A Exploration B

Editable Graph
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Note the use of parentheses in Example 4. A liberal use of parentheses is recom-
mended for types of differentiation problems. For instance, with the Quotient Rule,
it is a good idea to enclose all factors and derivatives in parentheses, and to pay special
attention to the subtraction required in the numerator. 

When differentiation rules were introduced in the preceding section, the need for
rewriting differentiating was emphasized. The next example illustrates this
point with the Quotient Rule.

EXAMPLE 5 Rewriting Before Differentiating

Find an equation of the tangent line to the graph of at 

Solution Begin by rewriting the function.

Write original function.

Multiply numerator and denominator by 

Rewrite.

Quotient Rule

Simplify.

To find the slope at evaluate 

Slope of graph at 

Then, using the point-slope form of the equation of a line, you can determine that the
equation of the tangent line at is See Figure 2.23.

The editable graph feature below allows you to edit the graph of a function.

Not every quotient needs to be differentiated by the Quotient Rule. For example,
each quotient in the next example can be considered as the product of a constant times
a function of In such cases it is more convenient to use the Constant Multiple Rule.

EXAMPLE 6 Using the Constant Multiple Rule

a.

b.

c.

d. y$ ! #
18
5x3y$ !

9
5

!#2x#3"y !
9
5

!x#2"y !
9

5x2

y$ !
6
7

y$ ! #
3
7

!#2"y ! #
3
7

!3 # 2x"y !
#3!3x # 2x2"

7x

y$ !
5
2

x3y$ !
5
8

!4x3"y !
5
8

x4y !
5x4

8

y$ !
2x " 3

6
y$ !

1
6

!2x " 3"y !
1
6

!x2 " 3x"y !
x2 " 3x

6

Simplify          Differentiate        Rewrite                  Original Function      

x.

y ! 1.!#1, 1"

!#1, 1"f $!#1" ! 0

f $!#1".!#1, 1",

 !
#3x2 " 2x " 5

!x2 " 5x"2

 !
!3x2 " 15x" # !6x2 " 13x # 5"

!x2 " 5x"2

 f $ !x" !
!x2 " 5x"!3" # !3x # 1"!2x " 5"

!x2 " 5x"2

 !
3x # 1
x2 " 5x

x. !
x'3 #

1
x(

x!x " 5"

 f !x" !
3 # !1)x"

x " 5

!#1, 1".f !x" !
3 # !1)x"

x " 5

before

all

NOTE To see the benefit of using
the Constant Multiple Rule for some
quotients, try using the Quotient Rule
to differentiate the functions in Example
6—you should obtain the same results,
but with more work.

y

x

y = 1

f (x) = 
3 −     1

x + 5
x

−1−2−3−4−5−6−7 1 2 3

−2

−3

−4

−5

3

4

5

(−1, 1)

The line is tangent to the graph of
at the point 

Figure 2.23
!#1, 1".f !x"

y ! 1

Try It Exploration A

Try It Exploration A

Editable Graph
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In Section 2.2, the Power Rule was proved only for the case where the exponent
is a positive integer greater than 1. The next example extends the proof to include

negative integer exponents.

EXAMPLE 7 Proof of the Power Rule (Negative Integer Exponents)

If is a negative integer, there exists a positive integer such that So, by the
Quotient Rule, you can write

Quotient Rule and Power Rule

So, the Power Rule

Power Rule

is valid for any integer. In Exercise 75 in Section 2.5, you are asked to prove the case
for which is any rational number.

Derivatives of Trigonometric Functions
Knowing the derivatives of the sine and cosine functions, you can use the Quotient
Rule to find the derivatives of the four remaining trigonometric functions.

Proof Considering and applying the Quotient Rule, you
obtain

Apply Quotient Rule.

The proofs of the other three parts of the theorem are left as an exercise (see
Exercise 89).

 ! sec2 x.

 !
1

cos2 x

 !
cos2 x " sin2 x

cos2 x

 
d
dx

#tan x$ !
!cos x"!cos x" # !sin x"!#sin x"

cos2 x

tan x ! !sin x")!cos x"

n

Dx #xn$ ! nxn#1

n ! #k ! nxn#1.

 ! #kx#k#1

 !
0 # kxk#1

x2k

 !
xk!0" # !1"!kxk#1"

!xk"2

 
d

dx
#xn$ !

d
dx%

1
xk&

n ! #k.kn

n

THEOREM 2.9 Derivatives of Trigonometric Functions

d
dx

#csc x$ ! #csc x cot x
d
dx

#sec x$ ! sec x tan x

d
dx

#cot x$ ! #csc2x
d
dx

#tan x$ ! sec2 x

Try It Exploration A

Video
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EXAMPLE 8 Differentiating Trigonometric Functions

a.

b.

EXAMPLE 9 Different Forms of a Derivative

Differentiate both forms of 

Solution

First form:

Second form:

To show that the two derivatives are equal, you can write 

The summary below shows that much of the work in obtaining a simplified form
of a derivative occurs differentiating. Note that two characteristics of a simplified
form are the absence of negative exponents and the combining of like terms.

after

 ! csc2 x # csc x cot x.

 
1 # cos x

sin2 x
!

1
sin2 x

# ' 1
sin x('cos x

sin x(

 y$ ! #csc x cot x " csc2 x

 y ! csc x # cot x

 !
1 # cos x

sin2 x

 !
sin2 x " cos2 x # cos x

sin2 x

 y$ !
!sin x"!sin x" # !1 # cos x"!cos x"

sin2 x

 y !
1 # cos x

sin x

y !
1 # cos x

sin x
! csc x # cot x.

 ! !sec x"!1 " x tan x"
 y$ ! x!sec x tan x" " !sec x"!1"y ! x sec x

dy
dx

! 1 # sec2 xy ! x # tan x

Derivative                                        Function           NOTE Because of trigonometric iden-
tities, the derivative of a trigonometric
function can take many forms. This
presents a challenge when you are trying
to match your answers to those given in
the back of the text.

After Differentiating After Simplifying

Example 1

Example 3

Example 4

Example 5

Example 9
1 # cos x

sin2 x
!sin x"!sin x" # !1 # cos x"!cos x"

sin2 x

#3x2 " 2x " 5
!x2 " 5x"2

!x2 " 5x"!3" # !3x # 1"!2x " 5"
!x2 " 5x"2

#5x2 " 4x " 5
!x2 " 1"2

!x2 " 1"!5" # !5x # 2"!2x"
!x2 " 1"2

#2x sin x!2x"!#sin x" " !cos x"!2" # 2!cos x"

#24x2 " 4x " 15!3x # 2x2"!4" " !5 " 4x"!3 # 4x"
f!*x+f!*x+

Try It Exploration A

Try It Exploration A

Open Exploration
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Higher-Order Derivatives
Just as you can obtain a velocity function by differentiating a position function, you
can obtain an acceleration function by differentiating a velocity function. Another
way of looking at this is that you can obtain an acceleration function by differentiating
a position function 

Position function

Velocity function

Acceleration function

The function given by is the second derivative of and is denoted by 
The second derivative is an example of a higher-order derivative. You can define

derivatives of any positive integer order. For instance, the third derivative is the deriv-
ative of the second derivative. Higher-order derivatives are denoted as follows.

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

nth derivative:

EXAMPLE 10 Finding the Acceleration Due to Gravity

Because the moon has no atmosphere, a falling object on the moon encounters no air
resistance. In 1971, astronaut David Scott demonstrated that a feather and a hammer
fall at the same rate on the moon. The position function for each of these falling
objects is given by

where is the height in meters and is the time in seconds. What is the ratio of
Earth’s gravitational force to the moon’s?

Solution To find the acceleration, differentiate the position function twice.

Position function

Velocity function

Acceleration function

So, the acceleration due to gravity on the moon is meters per second per
second. Because the acceleration due to gravity on Earth is meters per second
per second, the ratio of Earth’s gravitational force to the moon’s is 

 , 6.05.

 
Earth’s gravitational force
Moon’s gravitational force

!
#9.8
#1.62

#9.8
#1.62

 s( !t" ! #1.62

 s$!t" ! #1.62t

 s!t" ! #0.81t2 " 2

ts!t"

s!t" ! #0.81t2 " 2

Dx
n#y$dn

dxn # f !x"$,dny
dxn,f !n"!x",y!n",

!

Dx
4 #y$d4

dx4 # f!x"$,d4y
dx4,f !4"!x",y!4",

Dx
3#y$d3

dx3 # f !x"$,d3y
dx3,f$$$!x",y$$$,

Dx
2#y$d 2

dx2 # f!x"$,d 2y
dx2,f( !x",y(,

Dx#y$d
dx

# f!x"$,
dy
dx

,f$!x",y$,

s( !t".s!t"a!t"

a!t" ! v$!t" !  s(!t"
 v!t" !  s$!t"

    s!t"

twice.

THE MOON

The moon’s mass is kilograms,
and Earth’s mass is kilograms.
The moon’s radius is 1737 kilometers, and
Earth’s radius is 6378 kilometers. Because the
gravitational force on the surface of a planet is
directly proportional to its mass and inversely
proportional to the square of its radius, the
ratio of the gravitational force on Earth to the
gravitational force on the moon is

!5.976 ) 1024")63782

!7.349 ) 1022")17372 , 6.03.

5.976 ) 1024
7.349 ) 1022

NOTE: The second derivative of is the
derivative of the first derivative of f.

f

Video Try It Exploration A



The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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E x e r c i s e s  f o r  S e c t i o n  2 . 3

In Exercises 1–6, use the Product Rule to differentiate the
function.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, use the Quotient Rule to differentiate the
function.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, find and 

13.

14.

15.

16.

17.

18.

In Exercises 19–24, complete the table without using the
Quotient Rule.

19.

20.

21.

22.

23.

24.

In Exercises 25–38, find the derivative of the algebraic function.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37. is a constant

38. is a constant

In Exercises 39–54, find the derivative of the trigonometric
function.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–58, use a computer algebra system to differen-
tiate the function. 

55.

56.

57. 58.

In Exercises 59–62, evaluate the derivative of the function at the
given point. Use a graphing utility to verify your result.

59.

60.

61.

62. !!
4

, 1"f #x$ " sin x#sin x # cos x$

!!, $
1
!"h#t$ "

sec t
t

#1, 1$f #x$ " tan x cot x

!!
6

, $3"y "
1 # csc x
1 $ csc x

Point      Function                             

f #%$ "
sin %

1 $ cos %
g#%$ "

%
1 $ sin %

f #x$ " !x2 $ x $ 3
x2 # 1 "#x2 # x # 1$

g#x$ " !x # 1
x # 2"#2x $ 5$

h#%$ " 5% sec % # % tan %y " 2x sin x # x2 cos x

f #x$ " sin x cos xf #x$ " x 2 tan x

y " x sin x # cos xy " $csc x $ sin x

y "
sec x

x
y "

3#1 $ sin x$
2 cos x

h#s$ "
1
s

$ 10 csc sg#t$ " 4%t # 8 sec t

y " x # cot xf #x$ " $x # tan x

f #x$ "
sin x

x
f #t$ "

cos t
t

f #%$ " #% # 1$ cos %f #t$ " t 2 sin t

cf #x$ "
c2 $ x 2

c2 # x 2,

cf #x$ "
x2 # c2

x2 $ c2,

f #x$ " #x2 $ x$#x2 # 1$#x2 # x # 1$
f #x$ " #3x3 # 4x$#x $ 5$#x # 1$

g#x$ " x2!2
x

$
1

x # 1"f #x$ "
2 $

1
x

x $ 3

h#x$ " #x2 $ 1$2h#s$ " #s3 $ 2$2

f #x$ " 3%x#%x # 3$f #x$ "
2x # 5
%x

f #x$ " x 4!1 $
2

x # 1"f #x$ " x!1 $
4

x # 3"

f #x$ "
x 3 # 3x # 2

x 2 $ 1
f #x$ "

3 $ 2x $ x 2

x 2 $ 1

y "
3x2 $ 5

7

y "
4x3&2

x

y "
4

5x2

y "
7

3x3

y "
5x2 $ 3

4

y "
x2 # 2x

3

SimplifyDifferentiateRewriteFunction      

c "
!
6

f #x$ "
sin x

x

c "
!
4

f #x$ " x cos x

c " 2f #x$ "
x # 1
x $ 1

c " 1f #x$ "
x2 $ 4
x $ 3

c " 1f #x$ " #x 2 $ 2x # 1$#x3 $ 1$
c " 0f #x$ " #x3 $ 3x$#2x 2 # 3x # 5$
Value of cFunction                                      

f!'c(.f!'x(

f #t$ "
cos t

t3g#x$ "
sin x

x2

h#s$ "
s

%s $ 1
h#x$ "

3%x
x3 # 1

g#t$ "
t2 # 2
2t $ 7

f #x$ "
x

x2 # 1

g#x$ " %x sin xf #x$ " x3 cos x

g#s$ " %s#4 $ s2$h#t$ " 3%t#t 2 # 4$
f #x$ " #6x # 5$#x 3 $ 2$g#x$ " #x2 # 1$#x2 $ 2x$
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In Exercises 63–68, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of a graphing utility to confirm your
results.

63.

64.

65. 66.

67. 68.

Famous Curves In Exercises 69–72, find an equation of the
tangent line to the graph at the given point. (The graphs in
Exercises 69 and 70 are called witches of Agnesi. The graphs in
Exercises 71 and 72 are called serpentines.)

69. 70.

71. 72.

In Exercises 73–76, determine the point(s) at which the graph of
the function has a horizontal tangent line.

73. 74.

75. 76.

77. Tangent Lines Find equations of the tangent lines to the

graph of that are parallel to the line 

Then graph the function and the tangent lines.

78. Tangent Lines Find equations of the tangent lines to the

graph of that pass through the point 

Then graph the function and the tangent lines.

In Exercises 79 and 80, verify that and explain
the relationship between and 

79.

80.

In Exercises 81 and 82, use the graphs of and Let

and 

81. (a) Find 82. (a) Find 

(b) Find (b) Find 

83. Area The length of a rectangle is given by and its
height is where is time in seconds and the dimensions are
in centimeters. Find the rate of change of the area with respect
to time.

84. Volume The radius of a right circular cylinder is given by
and its height is where is time in seconds and the

dimensions are in inches. Find the rate of change of the volume
with respect to time.

85. Inventory Replenishment The ordering and transportation
cost for the components used in manufacturing a product is

where is measured in thousands of dollars and is the order
size in hundreds. Find the rate of change of with respect to 
when (a) (b) and (c) What do these
rates of change imply about increasing order size?

86. Boyle’s Law This law states that if the temperature of a gas
remains constant, its pressure is inversely proportional to its
volume. Use the derivative to show that the rate of change of the
pressure is inversely proportional to the square of the volume.

87. Population Growth A population of 500 bacteria is introduced
into a culture and grows in number according to the equation 

where is measured in hours. Find the rate at which the popu-
lation is growing when t " 2.

t

P#t$ " 500!1 #
4t

50 # t2"

x " 20.x " 15,x " 10,
xC

xC

x 1C " 100!200
x2 #

x
x # 30",

C

t1
2%t,%t # 2

t%t,
2t # 1

y

x
22 4 6 8 10

2

4

8

10

f

g

y

x

f

g

22 4 6 8 10

2

6

8

10

q&#7$.q&#4$.
p&#4$.p&#1$.

q'x( "
f 'x(
g'x(.p 'x( " f 'x(g'x(

g.f

g#x$ "
sin x # 2x

x
f #x$ "

sin x $ 3x
x

,

g#x$ "
5x # 4
x # 2

f #x$ "
3x

x # 2
,

g.f
f! 'x( " g!'x(,

#$1, 5$.f #x$ "
x

x $ 1

2y # x " 6.f #x$ "
x # 1
x $ 1

f #x$ "
x $ 4
x2 $ 7

f #x$ "
4x $ 2

x2

f #x$ "
x2

x2 # 1
f #x$ "

x2

x $ 1

y

x
21 3 4

2
3

1

4

f (x) = 4x
x2 + 6

(2,   )4
5

y

x
4 8

8

4

8 f (x) = 16x
x2 + 16

( 2,   )8
5

y

x
2 42

2
4

4

6 f (x) = 27
x2 + 9

( 3,   )3
2

y

x
2 42

2
4

4

6

f (x) = 8
x2 + 4

(2, 1)

!!
3

, 2"f #x$ " sec x,!!
4

, 1"f #x$ " tan x,

!2, 
1
3"f #x$ "

#x $ 1$
#x # 1$,#2, 2$f #x$ "

x
x $ 1

,

#0, 2$f #x$ " #x $ 1$#x 2 $ 2$,
#1, $3$f #x$ " #x3 $ 3x # 1$#x # 2$,

f
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88. Gravitational Force Newton’s Law of Universal Gravitation
states that the force between two masses, and is

where is a constant and is the distance between the masses.
Find an equation that gives an instantaneous rate of change of

with respect to (Assume and represent moving
points.)

89. Prove the following differentiation rules.

(a) (b)

(c)

90. Rate of Change Determine whether there exist any values of
in the interval such that the rate of change of

and the rate of change of are equal.

91. Modeling Data The table shows the numbers (in thousands)
of motor homes sold in the United States and the retail values 
(in billions of dollars) of these motor homes for the years 1996
through 2001. The year is represented by with 
corresponding to 1996. (Source: Recreation Vehicle Industry
Association)

(a) Use a graphing utility to find cubic models for the number
of motor homes sold and the total retail value of the
motor homes.

(b) Graph each model found in part (a).

(c) Find then graph What does this function
represent?

(d) Interpret in the context of these data.

92. Satellites When satellites observe Earth, they can scan only
part of Earth’s surface. Some satellites have sensors that can
measure the angle shown in the figure. Let represent the
satellite’s distance from Earth’s surface and let represent
Earth’s radius.

(a) Show that 

(b) Find the rate at which is changing with respect to when
(Assume miles.)

In Exercises 93–98, find the second derivative of the function.

93. 94.

95. 96.

97. 98.

In Exercises 99–102, find the given higher-order derivative.

99. 100.

101. 102.

In Exercises 111–114, the graph of is shown. Sketch the
graphs of and To print an enlarged copy of the graph,
select the MathGraph button.

111. 112. y

x

f
4

4
8

4

8

y

x

f

24 4
2

2

4

f #.f!
f

f #6$#x$f #4$#x$ " 2x # 1,f #4$#x$f&&&#x$ " 2%x,

f&&&#x$f '#x$ " 2 $
2
x
,f ' #x$f&#x$ " x 2,

f #x$ " sec xf #x$ " 3 sin x

f #x$ "
x 2 # 2x $ 1

x
f #x$ "

x
x $ 1

f #x$ " x # 32x$2f #x$ " 4x3&2

r " 3960% " 30(.
%h

h " r #csc % $ 1$.

r

r h

r
h%

A&#t$

A.A " v#t$&n#t$,

v#t$n#t$

t " 6t,

v
n

g#x$ " csc xf #x$ " sec x
)0, 2! $x

d
dx

)cot x* " $csc2 x

d
dx

)csc x* " $csc x  cot x
d
dx

)sec x* " sec x  tan x

m2m1d.F

dG

F "
Gm1m2

d2

m2,m1F

Year, t 6 7 8 9 10 11

n 247.5 254.5 292.7 321.2 300.1 256.8

v 6.3 6.9 8.4 10.4 9.5 8.6

Writing About Concepts
103. Sketch the graph of a differentiable function such that

for and for

104. Sketch the graph of a differentiable function such that
and for all real numbers 

In Exercises 105–108, use the given information to find 

and

and

105. 106.

107. 108.

In Exercises 109 and 110, the graphs of and are
shown on the same set of coordinate axes. Which is which?
Explain your reasoning. To print an enlarged copy of the
graph, select the MathGraph button.

109. 110.

3
1

1

2

x

y

2

2

12
x

y

f #f!,f,

f #x$ " g#x$h#x$f #x$ "
g#x$
h#x$

f #x$ " 4 $ h#x$f #x$ " 2g#x$ # h#x$

h!'2( " 4h'2( " $1

g&'2( " $2g'2( " 3

f&'2(.

x.f& < 0f > 0
f

2 < x < ).
f& > 0$) < x < 2,f& < 0f #2$ " 0,
f



SECTION 2.3 Product and Quotient Rules and Higher-Order Derivatives 129

113. 114.

115. Acceleration The velocity of an object in meters per second is
Find the velocity and acceleration

of the object when What can be said about the speed of
the object when the velocity and acceleration have opposite
signs?

116. Acceleration An automobile’s velocity starting from rest is

where is measured in feet per second. Find the acceleration
at (a) 5 seconds, (b) 10 seconds, and (c) 20 seconds.

117. Stopping Distance A car is traveling at a rate of 66 feet per
second (45 miles per hour) when the brakes are applied. The
position function for the car is where 
is measured in feet and is measured in seconds. Use this
function to complete the table, and find the average velocity
during each time interval.

118. Particle Motion The figure shows the graphs of the position,
velocity, and acceleration functions of a particle.

(a) Copy the graphs of the functions shown. Identify each
graph. Explain your reasoning. To print an enlarged copy
of the graph, select the MathGraph button.

(b) On your sketch, identify when the particle speeds up and
when it slows down. Explain your reasoning.

Finding a Pattern In Exercises 119 and 120, develop a general
rule for given 

119. 120.

121. Finding a Pattern Consider the function 

(a) Use the Product Rule to generate rules for finding 
and 

(b) Use the results in part (a) to write a general rule for 

122. Finding a Pattern Develop a general rule for 
where is a differentiable function of 

In Exercises 123 and 124, find the derivatives of the function 
for and Use the results to write a general rule for

in terms of 

123. 124.

Differential Equations In Exercises 125–128, verify that the
function satisfies the differential equation.

125.

126.

127.

128.

True or False? In Exercises 129–134, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

129. If then 

130. If then 

131. If and are zero and then 

132. If is an th-degree polynomial, then 

133. The second derivative represents the rate of change of the first
derivative.

134. If the velocity of an object is constant, then its acceleration is
zero.

135. Find a second-degree polynomial such
that its graph has a tangent line with slope 10 at the point

and an -intercept at 

136. Consider the third-degree polynomial

Determine conditions for and if the graph of has
(a) no horizontal tangents, (b) exactly one horizontal tangent,
and (c) exactly two horizontal tangents. Give an example for
each case.

137. Find the derivative of Does exist?

138. Think About It Let and be functions whose first and
second derivatives exist on an interval Which of the following
formulas is (are) true?

(a)

(b) fg' # f 'g " # fg$'
fg' $ f 'g " # fg& $ f&g$&

I.
gf

f ' #0$f #x$ " x+x+.

fdc,b,a,

a * 0.f #x$ " ax3 # bx2 # cx # d,

#1, 0$.x#2, 7$

f #x$ " ax2 # bx # c

f #n#1$#x$ " 0.nf #x$
h&#c$ " 0.h#x$ " f #x$g#x$,g&#c$f&#c$

d 5y&dx5 " 0.y " #x # 1$#x # 2$#x # 3$#x # 4$,
dy&dx " f&#x$g&#x$.y " f #x$g#x$,

y' # y " 0y " 3 cos x # sin x

y' # y " 3y " 2 sin x # 3

$y'& $ xy' $ 2y& " $24x2y " 2x3 $ 6x # 10

x3 y' # 2x2 y& " 0y "
1
x
, x > 0

Differential Equation           Function                  
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xnf #x$ " xn sin x

n.f!'x(
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f

x.f
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f #n$#x$.
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1
x
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t
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Section 2.4 The Chain Rule
• Find the derivative of a composite function using the Chain Rule.
• Find the derivative of a function using the General Power Rule.
• Simplify the derivative of a function using algebra.
• Find the derivative of a trigonometric function using the Chain Rule.

The Chain Rule
This text has yet to discuss one of the most powerful differentiation rules—the Chain
Rule. This rule deals with composite functions and adds a surprising versatility to the
rules discussed in the two previous sections. For example, compare the functions
shown below. Those on the left can be differentiated without the Chain Rule, and those
on the right are best done with the Chain Rule.

Basically, the Chain Rule states that if changes times as fast as and 
changes times as fast as then changes times as fast as 

EXAMPLE 1 The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 2.24, such that the second and third
gears are on the same axle. As the first axle revolves, it drives the second axle, which in
turn drives the third axle. Let and represent the numbers of revolutions per minute
of the first, second, and third axles. Find and and show that

Solution Because the circumference of the second gear is three times that of the first,
the first axle must make three revolutions to turn the second axle once. Similarly, the
second axle must make two revolutions to turn the third axle once, and you can write

and

Combining these two results, you know that the first axle must make six revolutions
to turn the third axle once. So, you can write

.

In other words, the rate of change of with respect to is the product of the rate of
change of with respect to and the rate of change of with respect to x.uuy

xy

Rate of change of first axle
with respect to third axle !

 !
dy
du "

du
dx

! 3 " 2 ! 6

Rate of change of second axle
with respect to third axle"

Rate of change of first axle
with respect to second axle 

dy
dx

!

du
dx

! 2.
dy
du

! 3

dy
dx

!
dy
du "

du
dx

.

dy!dx,du!dx,dy!du,
xy, u,

x."dy!du#"du!dx#yx,du!dx
uu,dy!duy

y ! x # tan x2y ! x # tan x

y ! "3x # 2#5y ! 3x # 2

y ! sin 6xy ! sin x

y ! $x2 # 1y ! x 2 # 1

With the Chain RuleWithout the Chain Rule

1

1
2

Axle 1

Axle 2

Axle 3

Gear 1

Gear 2

Gear 3

Gear 4

3

Axle 1: revolutions per minute
Axle 2: revolutions per minute
Axle 3: revolutions per minute
Figure 2.24

x
u
y

Video

Animation

Try It Exploration A
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Example 1 illustrates a simple case of the Chain Rule. The general rule is stated
below.

Proof Let Then, using the alternative form of the derivative, you
need to show that, for 

An important consideration in this proof is the behavior of as approaches 
A problem occurs if there are values of other than such that 
Appendix A shows how to use the differentiability of and to overcome this
problem. For now, assume that for values of other than In the proofs
of the Product Rule and the Quotient Rule, the same quantity was added and sub-
tracted to obtain the desired form. This proof uses a similar technique—multiplying
and dividing by the same (nonzero) quantity. Note that because is differentiable, it
is also continuous, and it follows that as 

When applying the Chain Rule, it is helpful to think of the composite function
as having two parts—an inner part and an outer part.

Outer function

Inner function

The derivative of is the derivative of the outer function (at the inner function
) times the derivative of the inner function.

y$ ! f$"u# " u$

u
y ! f "u#

y ! f "g"x## ! f "u#

f % g

 ! f$"g"c##g$"c#

 ! % lim
x→c

 
f "g"x## & f "g"c##

g"x# & g"c# &% lim
x→c

 
g"x# & g"c#

x & c &
 ! lim

x→c
 % f "g"x## & f "g"c##

g"x# & g"c# "
g"x# & g"c#

x & c &,   g"x# ' g"c#

 h$"c# ! lim
x→c 

 
f "g"x## & f "g"c##

x & c

x → c.g"x# → g"c#
g

c.xg"x# ' g"c#
gf

g"x# ! g"c#.c,x,
c.xg

h$"c# ! f$"g"c##g$"c#.

x ! c,
h"x# ! f "g"x##.

THEOREM 2.10 The Chain Rule

If is a differentiable function of and is a differentiable
function of then is a differentiable function of and 

or, equivalently,

d
dx

' f "g"x##( ! f$"g"x##g$"x#.

dy
dx

!
dy
du "

du
dx

xy ! f "g"x##x,
u ! g"x#uy ! f "u#

E X P L O R A T I O N

Using the Chain Rule Each of
the following functions can be differ-
entiated using rules that you studied
in Sections 2.2 and 2.3. For each
function, find the derivative using
those rules. Then find the derivative
using the Chain Rule. Compare your
results. Which method is simpler?

a.

b.
c. sin 2x

"x # 2#3

2
3x # 1
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EXAMPLE 2 Decomposition of a Composite Function

a.

b.
c.
d.

EXAMPLE 3 Using the Chain Rule

Find for 

Solution For this function, you can consider the inside function to be 
By the Chain Rule, you obtain

The editable graph feature below allows you to edit the graph of a function and
its derivative.

The General Power Rule
The function in Example 3 is an example of one of the most common types of
composite functions, The rule for differentiating such functions is called
the General Power Rule, and it is a special case of the Chain Rule.

Proof Because you apply the Chain Rule to obtain

By the (Simple) Power Rule in Section 2.2, you have and it follows
that

dy
dx

! n'u"x#(n&1 
du
dx

.

Du 'un( ! nun&1,

 !
d
du

 'un( du
dx

.

 
dy
dx

! )dy
du*)du

dx*
y ! un,

y ! 'u"x#(n.

du
dx

dy
du

dy
dx

! 3"x2 # 1#2"2x# ! 6x"x2 # 1#2.

u ! x2 # 1.

y ! "x2 # 1#3.dy!dx

y ! u2u ! tan xy ! tan2 x

y ! $uu ! 3x 2 & x # 1y ! $3x2 & x # 1

y ! sin uu ! 2xy ! sin 2x

y !
1
u

u ! x # 1y !
1

x # 1

y ! f "u#   u ! g"x#                  y ! f "g"x##                 

STUDY TIP You could also solve the
problem in Example 3 without using the
Chain Rule by observing that

and

Verify that this is the same as the deriva-
tive in Example 3. Which method would
you use to find

d
dx

"x2 # 1#50?

y$ ! 6x5 # 12x3 # 6x.

y ! x 6 # 3x 4 # 3x 2 # 1

THEOREM 2.11 The General Power Rule

If where is a differentiable function of and is a rational
number, then

or, equivalently,

d
dx

'un( ! nun&1 u$.

dy
dx

! n'u"x#(n&1 
du
dx

nxuy ! 'u"x#(n,

Try It Exploration A

Try It Exploration A Exploration B

Editable Graph

Video



...

...

.

..

. SECTION 2.4 The Chain Rule 133

EXAMPLE 4 Applying the General Power Rule

Find the derivative of 

Solution Let Then

and, by the General Power Rule, the derivative is

Apply General Power Rule.

Differentiate 

The editable graph feature below allows you to edit the graph of a function.

EXAMPLE 5 Differentiating Functions Involving Radicals

Find all points on the graph of for which and those for
which does not exist.

Solution Begin by rewriting the function as

Then, applying the General Power Rule (with produces

Apply General Power Rule.

Write in radical form.

So, when and does not exist when as shown in Figure
2.25.

EXAMPLE 6 Differentiating Quotients with Constant Numerators

Differentiate 

Solution Begin by rewriting the function as

Then, applying the General Power Rule produces

Apply General Power Rule.

Constant
Multiple Rule

Simplify.

Write with positive exponent. !
28

"2t & 3#3 .

 ! 28"2t & 3#&3

g$"t# ! "&7#"&2#"2t & 3#&3"2#

u$un&1n

g"t# ! &7"2t & 3#&2.

g"t# !
&7

"2t & 3#2 .

x ! ±1,f$"x#x ! 0f$"x# ! 0

 !
4x

3 3$x2 & 1
.

 f$"x# !
2
3

 "x2 & 1#&1!3 "2x#

u$un&1n

u ! x2 & 1#
f "x# ! "x2 & 1#2!3.

f$"x#
f$"x# ! 0f "x# ! 3$"x2 & 1#2

3x & 2x 2. ! 3"3x & 2x2#2"3 & 4x#.

 f$"x# ! 3"3x & 2x2#2 
d
dx

 '3x & 2x2(

u$un&1n

f "x# ! "3x & 2x2#3 ! u3

u ! 3x & 2x2.

f "x# ! "3x & 2x2#3.

−2 2

2

−1

−2

−1 1
x

y

f ′(x) =

f (x) =     (x2 − 1)2

4x

3    x2 − 13

3

NOTE Try differentiating the function
in Example 6 using the Quotient Rule.
You should obtain the same result, but
using the Quotient Rule is less efficient
than using the General Power Rule.

The derivative of is 0 at and is 
undefined at 
Figure 2.25

x ! ± 1.
x ! 0f

Try It Exploration A

Editable Graph

Try It Exploration AEditable Graph

Try It Exploration A Exploration B

Video
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Simplifying Derivatives
The next three examples illustrate some techniques for simplifying the “raw deriva-
tives” of functions involving products, quotients, and composites.

EXAMPLE 7 Simplifying by Factoring Out the Least Powers

Original function

Rewrite.

Product Rule

General Power Rule

Simplify.

Factor.

Simplify.

EXAMPLE 8 Simplifying the Derivative of a Quotient

Original function

Rewrite.

Quotient Rule

Factor.

Simplify.

EXAMPLE 9 Simplifying the Derivative of a Power

Original function

General Power Rule

Quotient Rule

Multiply.

Simplify. !
2"3x & 1#"&3x2 # 2x # 9#

"x2 # 3#3

 !
2"3x & 1#"3x2 # 9 & 6x2 # 2x#

"x2 # 3#3

 ! %2"3x & 1#
x2 # 3 &%"x2 # 3#"3# & "3x & 1#"2x#

"x2 # 3#2 &
 y$ ! 2 )3x & 1

x2 # 3* 
d
dx

 %3x & 1
x2 # 3&

u$un&1n

 y ! )3x & 1
x2 # 3*

2

 !
x2 # 12

3"x2 # 4#4!3

 !
1
3

"x2 # 4#&2!3%3"x2 # 4# & "2x2#"1#
"x2 # 4#2!3 &

 f$"x# !
"x2 # 4#1!3"1# & x"1!3#"x2 # 4#&2!3"2x#

"x2 # 4#2!3

 !
x

"x2 # 4#1!3

 f "x# !
x

3$x2 # 4

 !
x"2 & 3x2#
$1 & x2

 ! x"1 & x2#&1!2'&x2"1# # 2"1 & x2#(
 ! &x3"1 & x2#&1!2 # 2x"1 & x2#1!2

 ! x2%1
2

 "1 & x2#&1!2"&2x#& # "1 & x2#1!2"2x#

 f$"x# ! x2 
d
dx

 '"1 & x2#1!2( # "1 & x2#1!2 
d
dx

 'x2(

 ! x2"1 & x2#1!2

 f "x# ! x2$1 & x2

TECHNOLOGY Symbolic
differentiation utilities are capable
of differentiating very complicated
functions. Often, however, the result
is given in unsimplified form. If you
have access to such a utility, use it to
find the derivatives of the functions
given in Examples 7, 8, and 9. Then
compare the results with those given
on this page.

Try It Exploration A

Try It Exploration A

Try It Exploration A Open Exploration
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Trigonometric Functions and the Chain Rule
The “Chain Rule versions” of the derivatives of the six trigonometric functions are as
shown.

EXAMPLE 10 Applying the Chain Rule to Trigonometric Functions

a.

b.
c.

Be sure that you understand the mathematical conventions regarding parentheses
and trigonometric functions. For instance, in Example 10(a), is written to mean

EXAMPLE 11 Parentheses and Trigonometric Functions

a.
b.
c.
d.

e.

To find the derivative of a function of the form you need to
apply the Chain Rule twice, as shown in Example 12.

EXAMPLE 12 Repeated Application of the Chain Rule

Original function

Rewrite.

Apply Chain Rule once.

Apply Chain Rule a second time.

Simplify. ! 12 sin2 4t cos 4t

 ! 3"sin 4t#2"cos 4t#"4#

 ! 3"sin 4t#2"cos 4t# d
dt

'4t(

 f$"t# ! 3"sin 4t#2 
d
dt

'sin 4t(

 ! "sin 4t#3

 f"t# ! sin3 4t

k"x# ! f"g"h"x###,

y$ !
1
2

"cos x#&1!2"&sin x# ! &
sin x

2$cos x
y ! $cos x ! "cos x#1!2

! &2 cos x sin xy$ ! 2"cos x#"&sin x#y ! cos2 x ! "cos x#2

y$ ! "&sin 9x2#"18x# ! &18x sin 9x2y ! cos"3x#2 ! cos"9x2#
y$ ! "cos 3#"2x# ! 2x cos 3y ! "cos 3#x2

y$ ! "&sin 3x2#"6x# ! &6x sin 3x2y ! cos 3x2 ! cos"3x2#

sin"2x#.
sin 2x

y$ ! 3 sec2 3xy ! tan 3x

y$ ! &sin"x & 1#y ! cos"x & 1#

y$ ! cos 2x 
d
dx

 '2x( ! "cos 2x#"2# ! 2 cos 2xy ! sin 2x

u$cos uu

d
dx

'csc u( ! &"csc u cot u# u$
d
dx

'sec u( ! "sec u tan u# u$

d
dx

'cot u( ! &"csc2 u# u$
d
dx

'tan u( ! "sec2 u# u$

d
dx

'cos u( ! &"sin u# u$
d
dx

'sin u( ! "cos u# u$

Technology
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Try It Exploration A
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EXAMPLE 13 Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of

at the point as shown in Figure 2.26. Then determine all values of in the
interval at which the graph of has a horizontal tangent.

Solution Begin by finding 

Write original function.

Apply Chain Rule to 

Simplify.

To find the equation of the tangent line at evaluate 

Substitute.

Slope of graph at 

Now, using the point-slope form of the equation of a line, you can write

Point-slope form

Substitute for and 

Equation of tangent line at 

You can then determine that when and So, has a

horizontal tangent at and 

This section concludes with a summary of the differentiation rules studied so far.

3(
2

.
5(
6

,
(
2

,x !
(
6

,

f
3(
2

.
5(
6

,
(
2

,x !
(
6

,f$"x# ! 0

"(, 1# y ! 1 & 2x # 2(.

x1.y1, m, y & 1 ! &2"x & (#
 y & y1 ! m"x & x1#

"(, 1# ! &2

 f$"(# ! 2 cos ( & 2 sin 2(

f$"(#."(, 1#,

 ! 2 cos x & 2 sin 2 x

cos 2x. f$"x# ! 2 cos x # "&sin 2x#"2#
 f "x# ! 2 sin x # cos 2x

f$"x#.

f"0, 2(#
x"(, 1#,

f "x# ! 2 sin x # cos 2x

y

x
π
2

ππ

π

2
3 π2

−2

−3

−4

1

2

(   , 1)

f (x) = 2 sin x + cos 2x

Figure 2.26

Summary of Differentiation Rules

General Differentiation Rules Let and be differentiable functions of .

Chain Rule
d
dx

'un( ! nun&1 u$
d
dx

' f"u#( ! f$"u# u$

General Power Rule:Chain Rule:                

d
dx

'csc x( ! &csc x cot x
d
dx

'cot x( ! &csc2 x
d
dx

'cos x( ! &sin x

d
dx

'sec x( ! sec x tan x
d
dx

'tan x( ! sec2 x
d
dx

'sin x( ! cos x

d
dx

'x( ! 1
d
dx

'xn( ! nxn&1,
d
dx

'c( ! 0

"Simple# Power Rule:                     Constant Rule:            

d
dx %

f
g& !

gf$ & fg$
g2

d
dx

' fg( ! fg$ # gf$

Quotient Rule:             Product Rule:              

d
dx

' f ± g( ! f$ ± g$
d
dx

'cf( ! cf$

Sum or Difference Rule:Constant Multiple Rule:

xug,f,

STUDY TIP To become skilled at
differentiation, you should memorize each
rule. As an aid to memorization, note that
the cofunctions (cosine, cotangent, and
cosecant) require a negative sign as part
of their derivatives.

Derivatives of Trigonometric
Functions

Derivatives of Algebraic
Functions

Try It Exploration A



The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.

In Exercises 1–6, complete the table.

1.

2.

3.

4.

5.

6.

In Exercises 7–32, find the derivative of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31.

32.

In Exercises 33–38, use a computer algebra system to find the
derivative of the function. Then use the utility to graph the
function and its derivative on the same set of coordinate axes.
Describe the behavior of the function that corresponds to any
zeros of the graph of the derivative.

33. 34.

35. 36.

37. 38.

In Exercises 39 and 40, find the slope of the tangent line to the
sine function at the origin. Compare this value with the number
of complete cycles in the interval What can you conclude
about the slope of the sine function at the origin?

39. (a) (b)

40. (a) (b)

In Exercises 41–58, find the derivative of the function.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59–66, evaluate the derivative of the function at the
given point. Use a graphing utility to verify your result.

59.

60.

61.

62.

63.

64.

65.

66. !!
2

, 
2
!"y "

1
x

# #cos x

$0, 36%y " 37 $ sec 3$2x%

$2, 3%f $x% "
x # 1

2x $ 3

$0, $2%f $t% "
3t # 2
t $ 1

!4, 
1
16"f $x% "

1
$x 2 $ 3x%2

!$1, $
3
5"f $x% "

3
x 3 $ 4

$2, 2%y " 5#3x 3 # 4x

$2, 4%s$t% " #t 2 # 2t # 8

Point        Function                     

y " sin 3#x # 3#sin xy " #x # 1
4 sin$2x%2

y " 3x $ 5 cos$!x%2f $t% " 3 sec2$!t $ 1%
h$t% " 2 cot2$!t # 2%f $%% " 1

4 sin 2 2%

g$t% " 5 cos2 ! ty " 4 sec2 x

g$v% "
cos v
csc v

f $x% "
cot x
sin x

g$%% " sec$1
2%% tan$1

2%%h$x% " sin 2x cos 2x

y " cos$1 $ 2x%2y " sin$!x%2

h$x% " sec x 2g$x% " 3 tan 4x

y " sin!xy " cos 3x

x

2

1

2

1

2 2
3 2

y

y = sin x
2

x

2

2

1

2

y

y = sin 3x

x

2

2

1

2
2

y

y = sin 2x

x

2

2

1

2
2

y

y = sin x

sin ax
[0, 2!].

y " x 2 tan 
1
x

y "
cos ! x # 1

x

g$x% " #x $ 1 ##x # 1y "#x # 1
x

y "# 2x
x # 1

y "
#x # 1
x 2 # 1

g$x% " !3x2 $ 2
2x # 3 "3

f $v% " !1 $ 2v
1 # v "3

h$t% " ! t 2

t 3 # 2"
2

g$x% " ! x # 5
x2 # 2"

2

y "
x

#x 4 # 4
y "

x
#x 2 # 1

y " 1
2 x2#16 $ x2y " x#1 $ x2

f $x% " x$3x $ 9%3f $x% " x2$x $ 2%4

g$t% "# 1
t 2 $ 2

y "
1

#x # 2

y " $
5

$t # 3%3f $t% " ! 1
t $ 3"

2

s$t% "
1

t 2 # 3t $ 1
y "

1
x $ 2

f $x% " $3 4#2 $ 9xy " 2 4#4 $ x 2

g$x% " #x 2 $ 2x # 1y " 3#9x 2 # 4

g$x% " #5 $ 3xf $t% " #1 $ t

f $t% " $9t # 2%2&3g$x% " 3$4 $ 9x%4

y " 3$4 $ x2%5y " $2x $ 7%3

y " cos 
3x
2

y " csc 3x

y " 3 tan$!x2%
y " #x2 $ 1

y "
1

#x # 1

y " $6x $ 5%4

y " f $u%u " g$x%y " f $g$x%%      
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In Exercises 67–74, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of the graphing utility to confirm your
results.

67.

68.

69.

70.

71.

72.

73.

74.

In Exercises 75–78, (a) use a graphing utility to find the
derivative of the function at the given point, (b) find an equation
of the tangent line to the graph of the function at the given
point, and (c) use the utility to graph the function and its
tangent line in the same viewing window.

75.

76.

77.

78.

Famous Curves In Exercises 79 and 80, find an equation of the
tangent line to the graph at the given point. Then use a graphing
utility to graph the function and its tangent line in the same
viewing window.

79. Top half of circle 80. Bullet-nose curve

81. Horizontal Tangent Line Determine the point(s) in the
interval at which the graph of 
has a horizontal tangent.

82. Horizontal Tangent Line Determine the point(s) at which the

graph of has a horizontal tangent.

In Exercises 83–86, find the second derivative of the function.

83. 84.

85. 86.

In Exercises 87–90, evaluate the second derivative of the func-
tion at the given point. Use a computer algebra system to verify
your result.

87.

88.

89.

90. !!
6

, #3"g$t% " tan 2t,

$0, 1%f $x% " cos$x2%,

!0, 
1
2"f $x% "

1
#x # 4

,

$1, 64
9 %h$x% " 1

9 $3x # 1%3,

f $x% " sec 2! xf $x% " sin x 2

f $x% "
1

x $ 2
f $x% " 2$x 2 $ 1%3

f $x% "
x

#2x $ 1

f $x% " 2 cos x # sin 2x$0, 2!%

y

x

f (x) =

(1, 1)

123 1 2 3

2

1

2

3

4

2  x2

x
y

x

f (x) =    25  x2 

(3, 4)

246 2 4 6

4

2

4

6

8

$2, $10%y " $t2 $ 9%#t # 2,

!0, 
4
3"s $t% "

$4 $ 2t%#1 # t
3

,

$4, 8%f $x% " #x $2 $ x%2,

!1
2

, 
3
2"g$t% "

3t2

#t2 # 2t $ 1
,

!!
4

, 2"y " 2 tan3 x

!!
4

, 1"f $x% " tan 2 x

!!
4

, $
#2
2 "y " cos 3x

$!, 0%f $x% " sin 2x

$1, 4%f $x% " $9 $ x2%2&3

$$1, 1%y " $2x3 # 1%2

$2, 2%f $x% " 1
3x#x 2 # 5

$3, 5%f $x% " #3x 2 $ 2

Point       Function                 

f

Writing About Concepts
In Exercises 91–94, the graphs of a function and its deriv-
ative are shown. Label the graphs as or and write a
short paragraph stating the criteria used in making the
selection. To print an enlarged copy of the graph, select the
MathGraph button.

91. 92.

93. 94.

In Exercises 95 and 96, the relationship between and is
given. Explain the relationship between and 

95. 96.

97. Given that and
find (if possible) for each of the follow-

ing. If it is not possible, state what additional information is
required.

(a) (b)

(c) (d) f $x% " 'g$x%( 3f $x% "
g$x%
h$x%

f $x% " g$h$x%%f $x% " g$x%h$x%

f&$5%h&$5% " $2,
3,h$5% "g&$5% " 6,g$5% " $3,

g$x% " f $x2%g$x% " f $3x%

g".f"
gf

x
42

4

2
3

4
3
2

y

x
3

3

y

x
32 41

3
2

4

y

x

3

2 3

2

3
2

y

f"ff"
f
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98. Think About It The table shows some values of the deriva-
tive of an unknown function Complete the table by finding
(if possible) the derivative of each transformation of 

(a) (b)

(c) (d)

In Exercises 99 and 100, the graphs of and are shown. Let
and Find each derivative, if it

exists. If the derivative does not exist, explain why.

99. (a) Find 100. (a) Find 

(b) Find (b) Find 

101. Doppler Effect The frequency of a fire truck siren heard
by a stationary observer is

where represents the velocity of the accelerating fire truck
in meters per second (see figure). Find the rate of change of 
with respect to when

(a) the fire truck is approaching at a velocity of 30 meters per
second (use ).

(b) the fire truck is moving away at a velocity of 30 meters
per second (use ).

102. Harmonic Motion The displacement from equilibrium of an
object in harmonic motion on the end of a spring is 

where is measured in feet and is the time in seconds.
Determine the position and velocity of the object when

103. Pendulum A 15-centimeter pendulum moves according to
the equation where is the angular displace-
ment from the vertical in radians and is the time in seconds.
Determine the maximum angular displacement and the rate of
change of when seconds.

104. Wave Motion A buoy oscillates in simple harmonic motion
as waves move past it. The buoy moves a total

of 3.5 feet (vertically) from its low point to its high point. It
returns to its high point every 10 seconds.

(a) Write an equation describing the motion of the buoy if it
is at its high point at 

(b) Determine the velocity of the buoy as a function of 

105. Circulatory System The speed of blood that is centime-
ters from the center of an artery is

where is a constant, is the radius of the artery, and 
is measured in centimeters per second. Suppose a drug is
administered and the artery begins to dilate at a rate of 
At a constant distance find the rate at which changes with
respect to for and

106. Modeling Data The normal daily maximum temperatures 
(in degrees Fahrenheit) for Denver, Colorado, are shown in 

the table. (Source: National Oceanic and Atmospheric
Administration)

(a) Use a graphing utility to plot the data and find a model for
the data of the form

where is the temperature and is the time in months,
with corresponding to January.

(b) Use a graphing utility to graph the model. How well does
the model fit the data?

(c) Find and use a graphing utility to graph the derivative.

(d) Based on the graph of the derivative, during what times
does the temperature change most rapidly? Most slowly?
Do your answers agree with your observations of the
temperature changes? Explain.

T&

t " 1
tT

T$t% " a # b sin$! t&6 $ c%

T

dR&dt " 10$5.
R " 1.2 ' 10$2,C " 1.76 ' 105,t

Sr,
dR&dt.

SRC

S " C$R 2 $ r 2%

rS

t.

t " 0.

y " A cos (t

t " 3%

t
%% " 0.2 cos 8t,

t " !&8.

ty

y " 1
3 cos 12t $ 1

4 sin 12t

331 + v
F =

331  v
F =132,400 132,400

#v

$v

v
F

±v

F "
132,400
331 ± v

F

y

x

f

g

2 4 6 8 10

2

4

8

10

y

x

f

g

2 4 6 8 10

2

6

8

10

s&$9%.s&$5%.
h&$3%.h&$1%.

s)x* # g) f )x**.h)x* # f )g)x**
gf

s$x% " f $x # 2%r$x% " f $$3x%
h$x% " 2 f $x%g$x% " f $x% $ 2

f.
f.

0 1 2 3

4

s"$x%

r")x*

h")x*

g")x*

$4$2$1$1
3

2
3f")x*

$1$2x

Month Jan Feb Mar Apr May Jun

Temperature 43.2 47.2 53.7 60.9 70.5 82.1

Month Jul Aug Sep Oct Nov Dec

Temperature 88.0 86.0 77.4 66.0 51.5 44.1
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107. Modeling Data The cost of producing units of a product is
For one week management determined the

number of units produced at the end of hours during an 
eight-hour shift. The average values of for the week are
shown in the table.

(a) Use a graphing utility to fit a cubic model to the data.

(b) Use the Chain Rule to find 

(c) Explain why the cost function is not increasing at a
constant rate during the 8-hour shift.

108. Finding a Pattern Consider the function 
where is a constant.

(a) Find the first-, second-, third-, and fourth-order derivatives
of the function.

(b) Verify that the function and its second derivative satisfy
the equation 

(c) Use the results in part (a) to write general rules for the
even- and odd-order derivatives

and 

[Hint: is positive if is even and negative if is odd.]

109. Conjecture Let be a differentiable function of period 

(a) Is the function periodic? Verify your answer.

(b) Consider the function Is the function 
periodic? Verify your answer.

110. Think About It Let and where
and are shown in the figure. Find (a) and (b) 

111. (a) Find the derivative of the function 
in two ways.

(b) For and show that

112. (a) Show that the derivative of an odd function is even. That
is, if then 

(b) Show that the derivative of an even function is odd. That
is, if then 

113. Let be a differentiable function of Use the fact that
to prove that

In Exercises 114–117, use the result of Exercise 113 to find the
derivative of the function.

114.

115.

116.

117.

Linear and Quadratic Approximations The linear and quad-
ratic approximations of a function at are

and 

In Exercises 118 and 119, (a) find the specified linear and
quadratic approximations of (b) use a graphing utility to
graph and the approximations, (c) determine whether or

is the better approximation, and (d) state how the accuracy
changes as you move farther from 

118. 119.

True or False? In Exercises 120–122, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

120. If then 

121. If then 

122. If is a differentiable function of is a differentiable
function of and is a differentiable function of then

dy
dx

"
dy
du

 
du
dv

 
dv
dx

.

x,vv,
uu,y

f&$x% " 2$sin 2x%$cos 2x%.f $x% " sin2$2x%,
y& " 1

2$1 $ x%$1)2.y " $1 $ x%1)2,

a "
!
6

a " 1

f $x% " sec 2xf $x% " tan 
!x
4

x # a.
P2

P1f
f,

P2)x* # 1
2 f$ )a*)x % a* 2 & f")a*)x % a* & f )a).

P1)x* # f")a*)x % a* & f )a*

x # af

f $x% " +sin x+
h$x% " +x+ cos x

f $x% " +x 2 $ 4+
g$x% " +2x $ 3+

u * 0.d
dx

'+u+( " u& 
u

+u+,
+u+ " #u2

x.u

f&$$x% " $f&$x%.f $$x% " f $x%,

f&$$x% " f&$x%.f $$x% " $f $x%,

f&$x% "g&$x%.

g$x% " tan 2 x,f $x% " sec2 x

g$x% " sin 2 x # cos 2 x

x

g

f

y

1
2
3
4
5
6
7

1 2 3 4 5 6 7

(2, 4)

(6, 6)

(6, 5)

s&$4%.r&$1%gf
s$x% " g$ f $x%%r$x% " f $g$x%%

g&$x%g$x% " f $2x%.
f&

p.f

kk$$1%k

f $2k$1%$x%.f $2k%$x%

f + $x% # , 2 f $x% " 0.

,
f $x% " sin ,x,

dC&dt.

x
t

C " 60x # 1350.
x

0 1 2 3 4 5 6 7 8

0 16 60 130 205 271 336 384 392x

t

Putnam Exam Challenge

123. Let where
are real numbers and where is a positive

integer. Given that for all real prove that

124. Let be a fixed positive integer. The th derivative of 

has the form

where is a polynomial. Find 

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Pn$1%.Pn$x%

Pn$x%
$xk $ 1%n#1

1
xk $ 1

nk

+a1 # 2a2 # .  .  . # nan+ 1.
x,+ f $x%+ +sin x+

na1, a2, .  .  ., an

f $x% " a1 sin x # a2 sin 2x # .  .  . # an sin nx,
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Section 2.5 Implicit Differentiation
• Distinguish between functions written in implicit form and explicit form.
• Use implicit differentiation to find the derivative of a function.

Implicit and Explicit Functions
Up to this point in the text, most functions have been expressed in explicit form. For
example, in the equation

Explicit form

the variable is explicitly written as a function of Some functions, however, are
only implied by an equation. For instance, the function is defined implicitly
by the equation Suppose you were asked to find for this equation. You
could begin by writing explicitly as a function of and then differentiating.

This strategy works whenever you can solve for the function explicitly. You cannot,
however, use this procedure when you are unable to solve for as a function of For
instance, how would you find for the equation

where it is very difficult to express as a function of explicitly? To do this, you can
use implicit differentiation.

To understand how to find implicitly, you must realize that the differentia-
tion is taking place with respect to This means that when you differentiate terms
involving alone, you can differentiate as usual. However, when you differentiate
terms involving you must apply the Chain Rule, because you are assuming that is
defined implicitly as a differentiable function of 

EXAMPLE 1 Differentiating with Respect to x

a. Variables agree: use Simple Power Rule.

Variables agree

b. Variables disagree: use Chain Rule.

Variables disagree

c. Chain Rule:

d. Product Rule

Chain Rule

Simplify. ! 2xy 
dy
dx

" y2

 ! x!2y
dy
dx" " y2#1$

 
d
dx

%xy2& ! x 
d
dx

% y2& " y2 d
dx

%x&

d
dx

%3y& ! 3y#
d
dx

%x " 3y& ! 1 " 3
dy
dx

d
dx

%y3& ! 3y2 dy
dx

u#nun$1un

d
dx

%x3& ! 3x2

x.
yy,

x
x.

dy'dx

xy

x2 $ 2y3 " 4y ! 2

dy'dx
x.y

dy
dx

! $x$2 ! $
1
x2y !

1
x

! x$1xy ! 1

Derivative                   Explicit Form Implicit Form

xy
dy'dxxy ! 1.

y ! 1'x
x.y

y ! 3x2 $ 5

E X P L O R A T I O N

Graphing an Implicit Equation
How could you use a graphing utility
to sketch the graph of the equation

Here are two possible approaches.

a. Solve the equation for Switch
the roles of and and graph 
the two resulting equations. The
combined graphs will show a 

rotation of the graph of the 
original equation.

b. Set the graphing utility to
parametric mode and graph the
equations

and

From either of these two approaches,
can you decide whether the graph 
has a tangent line at the point 
Explain your reasoning.

#0, 1$?

y ! t.

x ! (2t3 $ 4t " 2

y ! t

x ! $(2t3 $ 4t " 2

90%

yx
x.

x2 $ 2y3 " 4y ! 2?

Video

Try It Exploration A
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Implicit Differentiation

EXAMPLE 2 Implicit Differentiation

Find given that 

Solution

1. Differentiate both sides of the equation with respect to 

2. Collect the terms on the left side of the equation and move all other terms to
the right side of the equation.

3. Factor out of the left side of the equation.

4. Solve for by dividing by 

To see how you can use an implicit derivative, consider the graph shown in Figure
2.27. From the graph, you can see that is not a function of Even so, the derivative
found in Example 2 gives a formula for the slope of the tangent line at a point on this
graph. The slopes at several points on the graph are shown below the graph.

x.y

dy
dx

!
2x

3y2 " 2y $ 5

#3y2 " 2y $ 5$.dy'dx

dy
dx

#3y2 " 2y $ 5$ ! 2x

dy'dx

3y2 dy
dx

" 2y
dy
dx

$ 5
dy
dx

! 2x

dy'dx

 3y2 dy
dx

" 2y
dy
dx

$ 5
dy
dx

$ 2x ! 0

 
d
dx

%y3& "
d
dx

% y2& $
d
dx

%5y& $
d
dx

%x2& !
d
dx

%$4&

 
d
dx

%y3 " y2 $ 5y $ x2& !
d
dx

%$4&

x.

y3 " y2 $ 5y $ x2 ! $4.dy'dx

x
1 2

2

1

3−1
−1

−2

−2

−3

−4

(1, −3)

(2, 0)
(1, 1)

y3 + y2 − 5y − x2 = −4

y

0

Undefined

The implicit equation

has the derivative

Figure 2.27

dy
dx

!
2x

3y2 " 2y $ 5
.

y3 " y2 $ 5y $ x2 ! $4

#1, 1$
x ! 0

1
8#1, $3$
$ 4

5#2, 0$
Slope of GraphPoint on Graph

NOTE In Example 2, note that implicit
differentiation can produce an expression
for that contains both and y.xdy'dx

Guidelines for Implicit Differentiation

1. Differentiate both sides of the equation with respect to 

2. Collect all terms involving on the left side of the equation and move all
other terms to the right side of the equation.

3. Factor out of the left side of the equation.

4. Solve for dy'dx.

dy'dx

dy'dx

x.

TECHNOLOGY With most graphing utilities, it is easy to graph an equation
that explicitly represents as a function of Graphing other equations, however,
can require some ingenuity. For instance, to graph the equation given in Example 2,
use a graphing utility, set in parametric mode, to graph the parametric representa-
tions and for

How does the result compare with the graph shown in Figure 2.27?$5 ≤ t ≤ 5.
y ! t,x ! $(t3 " t2 $ 5t " 4,y ! t,x ! (t3 " t2 $ 5t " 4,

x.y
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It is meaningless to solve for in an equation that has no solution points.
(For example, has no solution points.) If, however, a segment of a
graph can be represented by a differentiable function, will have meaning as the
slope at each point on the segment. Recall that a function is not differentiable at (a)
points with vertical tangents and (b) points at which the function is not continuous.

EXAMPLE 3 Representing a Graph by Differentiable Functions

If possible, represent as a differentiable function of 

a. b. c.

Solution

a. The graph of this equation is a single point. So, it does not define as a
differentiable function of See Figure 2.28(a).

b. The graph of this equation is the unit circle, centered at The upper semicircle
is given by the differentiable function

and the lower semicircle is given by the differentiable function

At the points and the slope of the graph is undefined. See Figure
2.28(b).

c. The upper half of this parabola is given by the differentiable function

and the lower half of this parabola is given by the differentiable function

At the point the slope of the graph is undefined. See Figure 2.28(c).

EXAMPLE 4 Finding the Slope of a Graph Implicitly

Determine the slope of the tangent line to the graph of

at the point See Figure 2.29.

Solution

Write original equation.

Differentiate with respect to 

Solve for 

So, at the slope is

Evaluate when and 

NOTE To see the benefit of implicit differentiation, try doing Example 4 using the explicit
function y ! $1

2(4 $ x2.

y ! $
1
(2

.x ! (2
dy
dx

dy
dx

!
$(2

$4'(2
!

1
2

.

#(2, $1'(2 $,

dy
dx

. 
dy
dx

!
$2x
8y

!
$x
4y

x. 2x " 8y
dy
dx

! 0

 x2 " 4y2 ! 4

#(2, $1'(2 $.
x2 " 4y2 ! 4

#1, 0$,

y ! $(1 $ x,  x < 1.

y ! (1 $ x,  x < 1

#1, 0$,#$1, 0$

y ! $(1 $ x2,  $1 < x < 1.

y ! (1 $ x2,  $1 < x < 1

#0, 0$.
x.

y

x " y2 ! 1x2 " y2 ! 1x2 " y2 ! 0

x.y

dy'dx
x2 " y2 ! $4

dy'dx

x
1

2

−1

−2
2, −( )1

2

x2 + 4y2 = 4

y

Figure 2.29

x

1

1

−1

(1, 0)

−1

y =    1 − x

y = −    1 − x

y

(c)

Some graph segments can be represented by
differentiable functions.
Figure 2.28

x

1

1

−1

−1

(−1, 0) (1, 0)

y =    1 − x2

y = −    1 − x2

y

(b)

x

1

1

−1

−1

(0, 0)
x2 + y2 = 0

y

(a)

Editable Graph

Editable Graph

Editable Graph

Editable Graph
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EXAMPLE 5 Finding the Slope of a Graph Implicitly

Determine the slope of the graph of at the point 

Solution

At the point the slope of the graph is

as shown in Figure 2.30. This graph is called a lemniscate.

EXAMPLE 6 Determining a Differentiable Function

Find implicitly for the equation Then find the largest interval of the
form on which is a differentiable function of (see Figure 2.31).

Solution

The largest interval about the origin for which is a differentiable function of is
To see this, note that is positive for all in this interval and

is 0 at the endpoints. If you restrict to the interval you should be
able to write explicitly as a function of To do this, you can use

and conclude that

dy
dx

!
1

(1 $ x2
.

 ! (1 $ x2,  $
&
2

< y <
&
2

 cos y ! (1 $ sin2 y

x.dy'dx
$&'2 < y < &'2,y

ycos y$&'2 < y < &'2.
xy

 
dy
dx

!
1

cos y

 cos y
dy
dx

! 1

 
d
dx

%sin y& !
d
dx

%x&

xy$a < y < a
sin y ! x.dy'dx

dy
dx

!
25#1$ $ 3#3$#32 " 12$

$25#3$ " 3#1$#32 " 12$ !
25 $ 90

$75 " 30
!

$65
$45

!
13
9

#3, 1$,

 !
25y $ 3x#x2 " y2$

$25x " 3y#x2 " y2$

 
dy
dx

!
100y $ 12x#x2 " y2$

$100x " 12y#x2 " y2$

 %12y#x2 " y2$ $ 100x&dy
dx

! 100y $ 12x#x2 " y2$ 

 12y#x2 " y2$dy
dx

$ 100x
dy
dx

! 100y $ 12x#x2 " y2$ 

 3#2$#x2 " y2$!2x " 2y
dy
dx" ! 100)x 

dy
dx

" y#1$*
 
d
dx

%3#x2 " y2$2& !
d
dx

%100xy&

#3, 1$.3#x2 " y2$2 ! 100xy

x
1

1

2

3

3

4

4

−1−2−4

−4

(3, 1)

3(x2 + y2)2 = 100xy

y

Lemniscate
Figure 2.30

x
1−1

π
2

π
2

−

2− π3

−1, π
2−( )

1, π
2( )

sin y = x

y

The derivative is 

Figure 2.31

dy
dx

!
1

(1 $ x2
.
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With implicit differentiation, the form of the derivative often can be simplified (as
in Example 6) by an appropriate use of the original equation. A similar technique can
be used to find and simplify higher-order derivatives obtained implicitly.

EXAMPLE 7 Finding the Second Derivative Implicitly

Given find 

Solution Differentiating each term with respect to produces

Differentiating a second time with respect to yields

Quotient Rule

Substitute for 

Simplify.

Substitute 25 for 

EXAMPLE 8 Finding a Tangent Line to a Graph

Find the tangent line to the graph given by at the point
as shown in Figure 2.32.

Solution By rewriting and differentiating implicitly, you obtain

At the point the slope is

and the equation of the tangent line at this point is

 y ! 3x $ (2.

 y $
(2
2

! 3!x $
(2
2 "

dy
dx

!
#(2'2$%2#1'2$ " #1'2$&

#(2'2$%1 $ #1'2$&
!

3'2
1'2

! 3

#(2'2, (2'2$,

 
dy
dx

!
x#2x2 " y2$
y#1 $ x2$

.

 2y#x2 $ 1$dy
dx

! $2x#2x2 " y2$

 4x3 " x2!2y
dy
dx" " 2xy2 $ 2y 

dy
dx

! 0

 x4 " x2y2 $ y2 ! 0

#(2'2, (2'2$,
x2#x2 " y2$ ! y2

x2 " y2. ! $
25
y3

.

 ! $
y2 " x2

y3

dy
dx

.$x'y ! $
y $ #x$#$x'y$

y2

 
d 2y
dx2 ! $

#y$#1$ $ #x$#dy'dx$
y2

x

 
dy
dx

!
$2x
2y

! $
x
y

.

 2y 
dy
dx

! $2x

 2x " 2y 
dy
dx

! 0

x

d 2y
dx2

.x2 " y2 ! 25,

ISAAC BARROW (1630–1677)

The graph in Figure 2.32 is called the kappa
curve because it resembles the Greek letter
kappa, The general solution for the tangent
line to this curve was discovered by the
English mathematician Isaac Barrow. Newton
was Barrow’s student, and they corresponded
frequently regarding their work in the early
development of calculus.

'.

x
1

1

−1

−1

2
2

2
2

, )(

x2(x2 + y2) = y2

y

The kappa curve
Figure 2.32
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The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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E x e r c i s e s  f o r  S e c t i o n  2 . 5

In Exercises 1–16, find by implicit differentiation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–20, (a) find two explicit functions by solving the
equation for in terms of (b) sketch the graph of the equation
and label the parts given by the corresponding explicit 
functions, (c) differentiate the explicit functions, and (d) find

and show that the result is equivalent to that of part (c).

17. 18.

19. 20.

In Exercises 21–28, find by implicit differentiation and
evaluate the derivative at the given point.

21.

22.

23.

24.

25.

26.

27.

28.

Famous Curves In Exercises 29–32, find the slope of the tan-
gent line to the graph at the given point.

29. Witch of Agnesi: 30. Cissoid:

Point: Point:

31. Bifolium: 32. Folium of Descartes:

Point: Point:

Famous Curves In Exercises 33–40, find an equation of the
tangent line to the graph at the given point. To print an enlarged
copy of the graph, select the MathGraph button.

33. Parabola 34. Circle

35. Rotated hyperbola 36. Rotated ellipse

37. Cruciform 38. Astroid

y

x
(8, 1)

12

12

12

x2/3 + y2/3 = 5
y

x
( 4, 2    3)

246 4 62

4

4
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x2y2  9x2  4y2 = 0

y
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3 2 3

3

2

2

3

(   3, 1)

7x2  6    3xy + 13y2  16 = 0
y

x

xy = 1

(1, 1)

3 1 2 3

1

2

3

y

x

(3, 4)

268 4

4

2

4

8

(x + 1)2 + (y  2)2 = 20
y

x
2 42 10 12 14

4

4
6
8

2

6
8

(4, 0)

(y  2)2 = 4(x  3)

x

1

1

2

2 3

3

4

4

2

2

y

x

1

1

2

2
1

1

2

2

y

!4
3, 83"!1, 1"

x3 ! y3 " 6xy # 0!x2 ! y 2"2 # 4x2y

x
2 3

1

2

1

2

y

x

1

1

3

2
1

12

y

!2, 2"!2, 1"
!4 " x"y 2 # x3!x2 ! 4"y # 8

#2, 
$
3$x cos y # 1,

!0, 0"tan!x ! y" # x,

!2, 1"x3 ! y3 # 4xy ! 1,

!8, 1"x 2%3 ! y 2%3 # 5,

!"1, 1"!x ! y"3 # x3 ! y3,

!2, 0"y2 #
x2 " 4
x2 ! 4

,

!1, 1"x2 " y3 # 0,

!"4, "1"xy # 4,

dy/dx

9y 2 " x2 # 99x2 ! 16y2 # 144

x2 ! y 2 " 4x ! 6y ! 9 # 0x2 ! y 2 # 16

dy/dx

x,y

x # sec 
1
y

y # sin!xy"

cot y # x " ysin x # x!1 ! tan y"
!sin $x ! cos $y"2 # 2sin x ! 2 cos 2y # 1

2 sin x cos y # 1x3 " 3x2y ! 2xy2 # 12

&xy # x " 2yx3y3 " y # x

x 2y ! y 2x # "2x3 " xy ! y 2 # 4

x3 ! y3 # 8x1%2 ! y1%2 # 9

x2 " y 2 # 16x2 ! y 2 # 36

dy/dx
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39. Lemniscate 40. Kappa curve

41. (a) Use implicit differentiation to find an equation of the

tangent line to the ellipse at 

(b) Show that the equation of the tangent line to the ellipse

at is 

42. (a) Use implicit differentiation to find an equation of the

tangent line to the hyperbola at 

(b) Show that the equation of the tangent line to the hyperbola

at is 

In Exercises 43 and 44, find implicitly and find the largest
interval of the form or such that is 
a differentiable function of Write as a function of 

43. 44.

In Exercises 45–50, find in terms of and 

45. 46.

47. 48.

49. 50.

In Exercises 51 and 52, use a graphing utility to graph the
equation. Find an equation of the tangent line to the graph at
the given point and graph the tangent line in the same viewing
window.

51. 52.

In Exercises 53 and 54, find equations for the tangent line and
normal line to the circle at the given points. (The normal line at
a point is perpendicular to the tangent line at the point.) Use a
graphing utility to graph the equation, tangent line, and normal
line.

53. 54.

55. Show that the normal line at any point on the circle
passes through the origin.

56. Two circles of radius 4 are tangent to the graph of at
the point Find equations of these two circles.

In Exercises 57 and 58, find the points at which the graph of the
equation has a vertical or horizontal tangent line.

57.

58.

Orthogonal Trajectories In Exercises 59–62, use a graphing
utility to sketch the intersecting graphs of the equations and show
that they are orthogonal. [Two graphs are orthogonal if at their
point(s) of intersection their tangent lines are perpendicular to
each other.]

59. 60.

61. 62.

Orthogonal Trajectories In Exercises 63 and 64, verify that the
two families of curves are orthogonal where and are real
numbers. Use a graphing utility to graph the two families for
two values of and two values of 

63. 64.

In Exercises 65–68, differentiate (a) with respect to ( is a func-
tion of ) and (b) with respect to ( and are functions of ).

65. 66.

67. 68.

71. Orthogonal Trajectories The figure below shows the
topographic map carried by a group of hikers. The hikers are in
a wooded area on top of the hill shown on the map and they
decide to follow a path of steepest descent (orthogonal
trajectories to the contours on the map). Draw their routes if
they start from point and if they start from point If their
goal is to reach the road along the top of the map, which
starting point should they use? To print an enlarged copy of the
graph, select the MathGraph button.
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B
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4 sin x cos y # 1cos $y " 3 sin $x # 1

x2 " 3xy 2 ! y3 # 102y 2 " 3x4 # 0
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x!3y " 29" # 3x # sin y

x3 # 3!y " 1"x ! y # 0

2x2 ! 3y 2 # 5y 2 # 4x

y 2 # x32x 2 ! y 2 # 6

4x2 ! y 2 " 8x ! 4y ! 4 # 0

25x 2 ! 16y 2 ! 200x " 160y ! 400 # 0

!1, 2".
y 2 # 4x

x2 ! y 2 # r 2

!0, 3", !2, &5 "!4, 3", !"3, 4"
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5 $y 2 #

x " 1
x2 ! 1

,!9, 1"&x ! &y # 4,

y 2 # 4xy 2 # x3

1 " xy # x " yx2 " y 2 # 16

x2y 2 " 2x # 3x2 ! y2 # 36

y.xd 2y/dx2

cos y # xtan y # x

x.dy/dxx.
y0 < y < a!a < y < a
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x0x
a2 "

y0y
b2 # 1.!x0, y0"

x2

a2 "
y2

b2 # 1

!3, "2".x2

6
"

y2

8
# 1

x0x
a2 !

y0y
b2 # 1.!x0, y0"

x2

a2 !
y2

b2 # 1

!1, 2".x2

2
!

y2

8
# 1

y

x
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3 2 32

2
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3

y2(x2 + y2) = 2x2

y

x

(4, 2)

6 6
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6

2

4

6

3(x2 + y2)2 = 100(x2  y2)

Writing About Concepts

69. Describe the difference between the explicit form of a
function and an implicit equation. Give an example of each.

70. In your own words, state the guidelines for implicit
differentiation.
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72. Weather Map The weather map shows several isobars—
curves that represent areas of constant air pressure. Three high
pressures and one low pressure are shown on the map.
Given that wind speed is greatest along the orthogonal
trajectories of the isobars, use the map to determine the areas
having high wind speed.

73. Consider the equation 

(a) Use a graphing utility to graph the equation.

(b) Find and graph the four tangent lines to the curve for

(c) Find the exact coordinates of the point of intersection of the
two tangent lines in the first quadrant.

74. Let be any tangent line to the curve Show
that the sum of the and intercepts of is 

75. Prove (Theorem 2.3) that

for the case in which is a rational number. (Hint: Write
in the form and differentiate implicitly.

Assume that and are integers, where )

76. Slope Find all points on the circle where the
slope is 

77. Horizontal Tangent Determine the point(s) at which the graph
of has a horizontal tangent.

78. Tangent Lines Find equations of both tangent lines to the

ellipse that passes through the point 

79. Normals to a Parabola The graph shows the normal lines
from the point to the graph of the parabola How
many normal lines are there from the point to the graph
of the parabola if (a) (b) and (c)
For what value of are two of the normal lines perpendicular
to each other?

80. Normal Lines (a) Find an equation of the normal line to the
ellipse

at the point (b) Use a graphing utility to graph the
ellipse and the normal line. (c) At what other point does the
normal line intersect the ellipse?

!4, 2".

x2

32
!

y2

8
# 1

y

x
(2, 0)

x = y2

x0

x0 # 1?x0 # 1
2,x0 # 1

4,
!x0, 0"

x # y2.!2, 0"

!4, 0".x2

4
!

y2

9
# 1

y 4 # y2 " x2

3
4.

x2 ! y2 # 25

q > 0.qp
yq # xpy # xp%q
n

d
dx

'xn( # nxn"1

c.Ly-x-
&x ! &y # &c.L

y # 3.

x4 # 4!4x2 " y 2".

H

L

H

H
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Section 2.6 Related Rates
• Find a related rate.
• Use related rates to solve real-life problems.

Finding Related Rates
You have seen how the Chain Rule can be used to find implicitly. Another
important use of the Chain Rule is to find the rates of change of two or more related
variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.33), the
volume the radius and the height of the water level are all functions of time 
Knowing that these variables are related by the equation

Original equation

you can differentiate implicitly with respect to to obtain the related-rate equation

Differentiate with respect to 

From this equation you can see that the rate of change of is related to the rates of
change of both and 

EXAMPLE 1 Two Rates That Are Related

Suppose and are both differentiable functions of and are related by the equation
Find when given that when 

Solution Using the Chain Rule, you can differentiate both sides of the equation with
respect to 

Write original equation.

Differentiate with respect to 

Chain Rule

When and you have

dy
dt

! 2!1"!2" ! 4.

dx#dt ! 2,x ! 1

 
dy
dt

! 2x 
dx
dt

t. 
d
dt

$y% !
d
dt

$x2 " 3%

 y ! x2 " 3

t.

x ! 1.dx#dt ! 2x ! 1,dy#dty ! x2 " 3.
tyx

r.h
V

 !
#
3

 &r2 
dh
dt

" 2rh 
dr
dt'.

t. 
dV
dt

!
#
3

 (r2 
dh
dt

" h&2r 
dr
dt')

d
dt

!V" !
d
dt &#

3
r2h'

t

V !
#
3

 r2h

t.hr,V,

dy#dx

h

r

Volume is related to radius and height.
Figure 2.33

h

r

h

r

FOR FURTHER INFORMATION To 
learn more about the history of related-
rate problems, see the article “The
Lengthening Shadow: The Story of
Related Rates” by Bill Austin, Don
Barry, and David Berman in Mathematics
Magazine. 

E X P L O R A T I O N

Finding a Related Rate In the conical tank shown in Figure 2.33, suppose that
the height is changing at a rate of foot per minute and the radius is changing
at a rate of foot per minute. What is the rate of change in the volume when
the radius is foot and the height is feet? Does the rate of change in
the volume depend on the values of and Explain.h?r

h ! 2r ! 1
$0.1

$0.2

Animation

MathArticle Try It Exploration A
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Problem Solving with Related Rates
In Example 1, you were given an equation that related the variables and and were
asked to find the rate of change of when 

Equation:

Given rate: when

Find: when

In each of the remaining examples in this section, you must create a mathematical
model from a verbal description.

EXAMPLE 2 Ripples in a Pond

A pebble is dropped into a calm pond, causing ripples in the form of concentric
circles, as shown in Figure 2.34. The radius of the outer ripple is increasing at a
constant rate of 1 foot per second. When the radius is 4 feet, at what rate is the total
area of the disturbed water changing?

Solution The variables and are related by The rate of change of the
radius is 

Equation:

Given rate:

Find: when

With this information, you can proceed as in Example 1.

Differentiate with respect to 

Chain Rule

Substitute 4 for and 1 for 

When the radius is 4 feet, the area is changing at a rate of square feet per second.8#

dr#dt.r 
dA
dt

! 2# !4"!1" ! 8#

 
dA
dt

! 2#r 
dr
dt

t. 
d
dt

$A% !
d
dt

$#r2%

r ! 4
dA
dt

dr
dt

! 1

A ! #r2

dr#dt ! 1.r
A ! #r2.Ar

A

r

x ! 1
dy
dt

x ! 1
dx
dt

! 2

y ! x2 " 3

x ! 1.y
yx

NOTE When using these guidelines, be
sure you perform Step 3 before Step 4.
Substituting the known values of the
variables before differentiating will
produce an inappropriate derivative.

Total area increases as the outer radius
increases.
Figure 2.34

Guidelines For Solving Related-Rate Problems

1. Identify all given quantities and quantities to be determined. Make a sketch
and label the quantities.

2. Write an equation involving the variables whose rates of change either are
given or are to be determined.

3. Using the Chain Rule, implicitly differentiate both sides of the equation with
respect to time 

4. After completing Step 3, substitute into the resulting equation all known
values for the variables and their rates of change. Then solve for the required
rate of change.

t.

Try It Exploration A Video Video
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The table below lists examples of mathematical models involving rates of change.
For instance, the rate of change in the first example is the velocity of a car.

EXAMPLE 3 An Inflating Balloon

Air is being pumped into a spherical balloon (see Figure 2.35) at a rate of 4.5 cubic
feet per minute. Find the rate of change of the radius when the radius is 2 feet.

Solution Let be the volume of the balloon and let be its radius. Because the 
volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time the
rate of change of the volume is So, the problem can be stated as shown.

Given rate: (constant rate)

Find: when

To find the rate of change of the radius, you must find an equation that relates the
radius to the volume 

Equation: Volume of a sphere

Differentiating both sides of the equation with respect to produces

Differentiate with respect to 

Solve for 

Finally, when the rate of change of the radius is

foot per minute.

In Example 3, note that the volume is increasing at a constant rate but the radius
is increasing at a variable rate. Just because two rates are related does not mean that
they are proportional. In this particular case, the radius is growing more and more
slowly as increases. Do you see why?t
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Verbal Statement Mathematical Model

The velocity of a car after traveling for 1 hour
is 50 miles per hour.

Water is being pumped into a swimming pool
at a rate of 10 cubic meters per hour.

A gear is revolving at a rate of 25 revolutions
per minute ( ).1 revolution ! 2# rad

% ! angle of revolution

V ! volume of water in pool

x ! distance traveled

when t ! 1
dx
dt

! 50

dV
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d%
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! 25!2#" rad#min

Inflating a balloon
Figure 2.35
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EXAMPLE 4 The Speed of an Airplane Tracked by Radar

An airplane is flying on a flight path that will take it directly over a radar tracking 
station, as shown in Figure 2.36. If is decreasing at a rate of 400 miles per hour when

miles, what is the speed of the plane?

Solution Let be the horizontal distance from the station, as shown in Figure 2.36.
Notice that when 

Given rate: when

Find: when and

You can find the velocity of the plane as shown.

Equation: Pythagorean Theorem

Differentiate with respect to 

Solve for 

Substitute for and 

miles per hour Simplify.

Because the velocity is miles per hour, the speed is 500 miles per hour.

EXAMPLE 5 A Changing Angle of Elevation

Find the rate of change in the angle of elevation of the camera shown in Figure 2.37
at 10 seconds after lift-off.

Solution Let be the angle of elevation, as shown in Figure 2.37. When the
height of the rocket is feet.

Given rate: velocity of rocket

Find: when and

Using Figure 2.37, you can relate and by the equation 

Equation: See Figure 2.37.

Differentiate with respect to 

Substitute for 

When and you have

radian per second.

So, when is changing at a rate of radian per second.2
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An airplane is flying at an altitude of 6
miles, miles from the station.
Figure 2.36
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A television camera at ground level is filming
the lift-off of a space shuttle that is rising
vertically according to the position equation

where is measured in feet and is
measured in seconds. The camera is 2000 feet
from the launch pad.
Figure 2.37
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EXAMPLE 6 The Velocity of a Piston

In the engine shown in Figure 2.38, a 7-inch connecting rod is fastened to a crank 
of radius 3 inches. The crankshaft rotates counterclockwise at a constant rate of 200
revolutions per minute. Find the velocity of the piston when 

Solution Label the distances as shown in Figure 2.38. Because a complete
revolution corresponds to radians, it follows that 
radians per minute.

Given rate: (constant rate)

Find: when

You can use the Law of Cosines (Figure 2.39) to find an equation that relates and 

Equation:

When you can solve for as shown.

Choose positive solution.

So, when and the velocity of the piston is

NOTE Note that the velocity in Example 6 is negative because represents a distance that is
decreasing.

x
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The velocity of a piston is related to the angle of the crankshaft.
Figure 2.38
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E x e r c i s e s  f o r  S e c t i o n  2 . 6

In Exercises 1– 4, assume that and are both differentiable
functions of and find the required values of and 

1. (a) when 

(b) when 

2. (a) when 

(b) when 

3. (a) when 

(b) when 

4. (a) when 

(b) when 

In Exercises 5–8, a point is moving along the graph of the given
function such that is 2 centimeters per second. Find 
for the given values of 

5. (a) (b) (c)

6. (a) (b) (c)

7. (a) (b) (c)

8. (a) (b) (c)

13. Find the rate of change of the distance between the origin 
and a moving point on the graph of if 
centimeters per second.

14. Find the rate of change of the distance between the origin 
and a moving point on the graph of if 
centimeters per second.

15. Area The radius of a circle is increasing at a rate of 3
centimeters per minute. Find the rates of change of the area
when (a) centimeters and (b) centimeters.

16. Area Let be the area of a circle of radius that is changing
with respect to time. If is constant, is constant?
Explain.

17. Area The included angle of the two sides of constant equal
length of an isosceles triangle is 

(a) Show that the area of the triangle is given by 

(b) If is increasing at the rate of radian per minute, find the
rates of change of the area when and 

(c) Explain why the rate of change of the area of the triangle is
not constant even though is constant.

18. Volume The radius of a sphere is increasing at a rate of 2
inches per minute.

(a) Find the rate of change of the volume when inches
and inches.

(b) Explain why the rate of change of the volume of the sphere
is not constant even though is constant.

19. Volume A spherical balloon is inflated with gas at the rate of
800 cubic centimeters per minute. How fast is the radius of the
balloon increasing at the instant the radius is (a) 30 centimeters
and (b) 60 centimeters?

20. Volume All edges of a cube are expanding at a rate of 3
centimeters per second. How fast is the volume changing when
each edge is (a) 1 centimeter and (b) 10 centimeters?

21. Surface Area The conditions are the same as in Exercise 20.
Determine how fast the surface area is changing when each
edge is (a) 1 centimeter and (b) 10 centimeters.

22. Volume The formula for the volume of a cone is 
Find the rate of change of the volume if is 2 inches 
per minute and when (a) inches and (b) 
inches.

23. Volume At a sand and gravel plant, sand is falling off a
conveyor and onto a conical pile at a rate of 10 cubic feet per
minute. The diameter of the base of the cone is approximately
three times the altitude. At what rate is the height of the pile
changing when the pile is 15 feet high?
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Writing About Concepts
In Exercises 9 and 10, using the graph of (a) determine
whether is positive or negative given that is
negative, and (b) determine whether is positive or
negative given that is positive.

9. 10.

11. Consider the linear function If changes at a
constant rate, does change at a constant rate? If so, does
it change at the same rate as Explain.x?

y
xy ! ax $ b.

x
3 2 1 1 2 3
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f

y

x
1 2 3 4

4

2

1 f

y

dy/dt
dx/dt
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Writing About Concepts (continued)
12. In your own words, state the guidelines for solving related-

rate problems.
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24. Depth A conical tank (with vertex down) is 10 feet across the
top and 12 feet deep. If water is flowing into the tank at a rate
of 10 cubic feet per minute, find the rate of change of the depth
of the water when the water is 8 feet deep.

25. Depth A swimming pool is 12 meters long, 6 meters wide,
1 meter deep at the shallow end, and 3 meters deep at the deep
end (see figure). Water is being pumped into the pool at cubic
meter per minute, and there is 1 meter of water at the deep end.

(a) What percent of the pool is filled?

(b) At what rate is the water level rising?

Figure for 25 Figure for 26

26. Depth A trough is 12 feet long and 3 feet across the top (see
figure). Its ends are isosceles triangles with altitudes of 3 feet.

(a) If water is being pumped into the trough at 2 cubic feet per
minute, how fast is the water level rising when is 1 foot
deep?

(b) If the water is rising at a rate of inch per minute when
determine the rate at which water is being pumped

into the trough.

27. Moving Ladder A ladder 25 feet long is leaning against the
wall of a house (see figure). The base of the ladder is pulled
away from the wall at a rate of 2 feet per second.

(a) How fast is the top of the ladder moving down the wall
when its base is 7 feet, 15 feet, and 24 feet from the wall?

(b) Consider the triangle formed by the side of the house, the
ladder, and the ground. Find the rate at which the area of
the triangle is changing when the base of the ladder is 7 feet
from the wall.

(c) Find the rate at which the angle between the ladder and the
wall of the house is changing when the base of the ladder is
7 feet from the wall.

Figure for 27 Figure for 28

FOR FURTHER INFORMATION For more information on the
mathematics of moving ladders, see the article “The Falling
Ladder Paradox” by Paul Scholten and Andrew Simoson in 
The College Mathematics Journal.

28. Construction A construction worker pulls a five-meter plank
up the side of a building under construction by means of a rope
tied to one end of the plank (see figure). Assume the opposite
end of the plank follows a path perpendicular to the wall of the
building and the worker pulls the rope at a rate of 0.15 meter
per second. How fast is the end of the plank sliding along the
ground when it is 2.5 meters from the wall of the building?

29. Construction A winch at the top of a 12-meter building pulls
a pipe of the same length to a vertical position, as shown in the
figure. The winch pulls in rope at a rate of meter per
second. Find the rate of vertical change and the rate of hori-
zontal change at the end of the pipe when 

Figure for 29 Figure for 30

30. Boating A boat is pulled into a dock by means of a winch 12
feet above the deck of the boat (see figure).

(a) The winch pulls in rope at a rate of 4 feet per second.
Determine the speed of the boat when there is 13 feet of
rope out. What happens to the speed of the boat as it gets
closer to the dock?

(b) Suppose the boat is moving at a constant rate of 4 feet per
second. Determine the speed at which the winch pulls in
rope when there is a total of 13 feet of rope out. What
happens to the speed at which the winch pulls in rope as the
boat gets closer to the dock?

31. Air Traffic Control An air traffic controller spots two planes
at the same altitude converging on a point as they fly at right
angles to each other (see figure). One plane is 150 miles from
the point moving at 450 miles per hour. The other plane is 200
miles from the point moving at 600 miles per hour.

(a) At what rate is the distance between the planes decreasing?

(b) How much time does the air traffic controller have to get
one of the planes on a different flight path?

Figure for 31 Figure for 32
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32. Air Traffic Control An airplane is flying at an altitude of 5
miles and passes directly over a radar antenna (see figure on
previous page). When the plane is 10 miles away the
radar detects that the distance is changing at a rate of 240
miles per hour. What is the speed of the plane?

33. Sports A baseball diamond has the shape of a square with
sides 90 feet long (see figure). A player running from second
base to third base at a speed of 28 feet per second is 30 feet
from third base. At what rate is the player’s distance from
home plate changing?

Figure for 33 and 34 Figure for 35

34. Sports For the baseball diamond in Exercise 33, suppose the
player is running from first to second at a speed of 28 feet per
second. Find the rate at which the distance from home plate is
changing when the player is 30 feet from second base.

35. Shadow Length A man 6 feet tall walks at a rate of 5 feet per
second away from a light that is 15 feet above the ground (see
figure). When he is 10 feet from the base of the light,

(a) at what rate is the tip of his shadow moving?
(b) at what rate is the length of his shadow changing?

36. Shadow Length Repeat Exercise 35 for a man 6 feet tall
walking at a rate of 5 feet per second toward a light that is 20
feet above the ground (see figure).

Figure for 36 Figure for 37

37. Machine Design The endpoints of a movable rod of length 
1 meter have coordinates and (see figure). The
position of the end on the axis is

where is the time in seconds.

(a) Find the time of one complete cycle of the rod.

(b) What is the lowest point reached by the end of the rod on
the axis?

(c) Find the speed of the axis endpoint when the axis 
endpoint is 

38. Machine Design Repeat Exercise 37 for a position function
of Use the point for part (c).

39. Evaporation As a spherical raindrop falls, it reaches a layer
of dry air and begins to evaporate at a rate that is proportional
to its surface area Show that the radius of the
raindrop decreases at a constant rate.

40. Electricity The combined electrical resistance of and 
connected in parallel, is given by 

where and are measured in ohms. and are
increasing at rates of 1 and 1.5 ohms per second, respectively. At
what rate is changing when ohms and ohms?

41. Adiabatic Expansion When a certain polyatomic gas
undergoes adiabatic expansion, its pressure and volume 
satisfy the equation where is a constant. Find the
relationship between the related rates and 

42. Roadway Design Cars on a certain roadway travel on a
circular arc of radius In order not to rely on friction alone to
overcome the centrifugal force, the road is banked at an angle
of magnitude from the horizontal (see figure). The banking
angle must satisfy the equation where is the
velocity of the cars and feet per second per second is
the acceleration due to gravity. Find the relationship between
the related rates and 

43. Angle of Elevation A balloon rises at a rate of 3 meters per
second from a point on the ground 30 meters from an observer.
Find the rate of change of the angle of elevation of the balloon
from the observer when the balloon is 30 meters above the
ground.

44. Angle of Elevation A fish is reeled in at a rate of 1 foot per
second from a point 10 feet above the water (see figure). At
what rate is the angle between the line and the water changing
when there is a total of 25 feet of line out?
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45. Angle of Elevation An airplane flies at an altitude of 5 miles
toward a point directly over an observer (see figure). The speed
of the plane is 600 miles per hour. Find the rates at which the
angle of elevation is changing when the angle is (a)
(b) and (c) 

46. Linear vs. Angular Speed A patrol car is parked 50 feet from
a long warehouse (see figure). The revolving light on top of the
car turns at a rate of 30 revolutions per minute. How fast is the
light beam moving along the wall when the beam makes angles
of (a) (b) and (c) with the line
perpendicular from the light to the wall?

Figure for 46 Figure for 47

47. Linear vs. Angular Speed A wheel of radius 30 centimeters
revolves at a rate of 10 revolutions per second. A dot is painted
at a point on the rim of the wheel (see figure).

(a) Find as a function of 

(b) Use a graphing utility to graph the function in part (a).

(c) When is the absolute value of the rate of change of 
greatest? When is it least?

(d) Find when and 

48. Flight Control An airplane is flying in still air with an
airspeed of 240 miles per hour. If it is climbing at an angle of

find the rate at which it is gaining altitude.

49. Security Camera A security camera is centered 50 feet above
a 100-foot hallway (see figure). It is easiest to design the cam-
era with a constant angular rate of rotation, but this results in a
variable rate at which the images of the surveillance area are
recorded. So, it is desirable to design a system with a variable
rate of rotation and a constant rate of movement of the scanning
beam along the hallway. Find a model for the variable rate of
rotation if feet per second.

50. Think About It Describe the relationship between the rate of
change of and the rate of change of in each expression.
Assume all variables and derivatives are positive.

(a) (b)

Acceleration In Exercises 51 and 52, find the acceleration of
the specified object. (Hint: Recall that if a variable is changing
at a constant rate, its acceleration is zero.)

51. Find the acceleration of the top of the ladder described in
Exercise 27 when the base of the ladder is 7 feet from the wall.

52. Find the acceleration of the boat in Exercise 30(a) when there
is a total of 13 feet of rope out.

53. Modeling Data The table shows the numbers (in millions) of
single women (never married) and married women in the
civilian work force in the United States for the years 1993
through 2001. (Source: U.S. Bureau of Labor Statistics)

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the
data, where is the time in years, with corresponding 
to 1993.

(b) Find Then use the model to estimate for
if it is predicted that the number of single women in

the work force will increase at the rate of 0.75 million
per year.

54. Moving Shadow A ball is dropped from a height of
20 meters, 12 meters away from the top of a 20-meter lamppost
(see figure). The ball’s shadow, caused by the light at the top of
the lamppost, is moving along the level ground. How fast is the
shadow moving 1 second after the ball is released?
(Submitted by Dennis Gittinger, St. Philips College, San
Antonio, TX)
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In Exercises 1–4, find the derivative of the function by using the
definition of the derivative.

1. 2.

3. 4.

In Exercises 5 and 6, describe the -values at which is
differentiable.

5. 6.

7. Sketch the graph of 

(a) Is continuous at 

(b) Is differentiable at Explain.

8. Sketch the graph of 

(a) Is continuous at 

(b) Is differentiable at Explain.

In Exercises 9 and 10, find the slope of the tangent line to the
graph of the function at the given point.

9.

10.

In Exercises 11 and 12, (a) find an equation of the tangent line
to the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of the graphing utility to confirm your
results.

11. 12.

In Exercises 13 and 14, use the alternative form of the derivative
to find the derivative at (if it exists).

13. 14.

In Exercises 15–30, find the derivative of the function.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Writing In Exercises 31 and 32, the figure shows the graphs of
a function and its derivative. Label the graphs as or and
write a short paragraph stating the criteria used in making the
selection. To print an enlarged copy of the graph, select the
MathGraph button.

31. 32.

33. Vibrating String When a guitar string is plucked, it vibrates
with a frequency of where is measured in vibra-
tions per second and the tension is measured in pounds. Find
the rates of change of when (a) and (b) 

34. Vertical Motion A ball is dropped from a height of 100 feet.
One second later, another ball is dropped from a height of 75
feet. Which ball hits the ground first?

35. Vertical Motion To estimate the height of a building, a weight
is dropped from the top of the building into a pool at ground
level. How high is the building if the splash is seen 9.2 seconds
after the weight is dropped?

36. Vertical Motion A bomb is dropped from an airplane at an alti-
tude of 14,400 feet. How long will it take for the bomb to reach
the ground? (Because of the motion of the plane, the fall will not
be vertical, but the time will be the same as that for a vertical
fall.) The plane is moving at 600 miles per hour. How far will the
bomb move horizontally after it is released from the plane?

37. Projectile Motion A ball thrown follows a path described by

(a) Sketch a graph of the path.
(b) Find the total horizontal distance the ball is thrown.
(c) At what value does the ball reach its maximum height?

(Use the symmetry of the path.)
(d) Find an equation that gives the instantaneous rate of change

of the height of the ball with respect to the horizontal
change. Evaluate the equation at 10, 25, 30, and 50.

(e) What is the instantaneous rate of change of the height when
the ball reaches its maximum height?
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38. Projectile Motion The path of a projectile thrown at an angle
of with level ground is

where the initial velocity is feet per second.

(a) Find the coordinate of the point where the projectile
strikes the ground. Use the symmetry of the path of the
projectile to locate the coordinate of the point where 
the projectile reaches its maximum height.

(b) What is the instantaneous rate of change of the height when
the projectile is at its maximum height?

(c) Show that doubling the initial velocity of the projectile
multiplies both the maximum height and the range by a 
factor of 4.

(d) Find the maximum height and range of a projectile thrown
with an initial velocity of 70 feet per second. Use a
graphing utility to graph the path of the projectile.

39. Horizontal Motion The position function of a particle
moving along the axis is

for

(a) Find the velocity of the particle.

(b) Find the open interval(s) in which the particle is moving
to the left.

(c) Find the position of the particle when the velocity is 0.

(d) Find the speed of the particle when the position is 0.

40. Modeling Data The speed of a car in miles per hour and the
stopping distance in feet are recorded in the table.

(a) Use the regression capabilities of a graphing utility to find
a quadratic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use a graphing utility to graph 

(d) Use the model to approximate the stopping distance at a
speed of 65 miles per hour.

(e) Use the graphs in parts (b) and (c) to explain the change in
stopping distance as the speed increases.

In Exercises 41–54, find the derivative of the function.

41.

42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–58, find an equation of the tangent line to the
graph of at the given point.

55. 56.

57. 58.

59. Acceleration The velocity of an object in meters per second
is Find the velocity and accelera-
tion of the object when 

60. Acceleration An automobile’s velocity starting from rest is

where is measured in feet per second. Find the vehicle’s
velocity and acceleration at each of the following times.

(a) 1 second (b) 5 seconds (c) 10 seconds

In Exercises 61–64, find the second derivative of the function.

61. 62.

63. 64.

In Exercises 65 and 66, show that the function satisfies the
equation.

65.

66.

In Exercises 67–78, find the derivative of the function.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

In Exercises 79–82, find the derivative of the function at the
given point.
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81.

82.

In Exercises 83–86, use a computer algebra system to find the
derivative of the function. Use the utility to graph the function
and its derivative on the same set of coordinate axes. Describe
the behavior of the function that corresponds to any zeros of the
graph of the derivative.

83. 84.

85. 86.

In Exercises 87–90, (a) use a computer algebra system to find
the derivative of the function at the given point, (b) find an
equation of the tangent line to the graph of the function at the
point, and (c) graph the function and its tangent line on the
same set of coordinate axes.

87.

88.

89.

90.

In Exercises 91–94, find the second derivative of the function.

91. 92.

93. 94.

In Exercises 95 –98, use a computer algebra system to find the
second derivative of the function.

95. 96.

97. 98.

99. Refrigeration The temperature of food put in a freezer is 

where is the time in hours. Find the rate of change of with
respect to at each of the following times.

(a) (b) (c) (d)

100. Fluid Flow The emergent velocity of a liquid flowing
from a hole in the bottom of a tank is given by 
where is the acceleration due to gravity (32 feet per second
per second) and is the depth of the liquid in the tank. Find
the rate of change of with respect to when (a) and
(b) (Note that feet per second per second.
The sign of depends on how a problem is modeled. In this
case, letting be negative would produce an imaginary value
for )

In Exercises 101–106, use implicit differentiation to find 

101. 102.

103. 104.

105. 106.

In Exercises 107 and 108, find the equations of the tangent line
and the normal line to the graph of the equation at the given
point. Use a graphing utility to graph the equation, the tangent
line, and the normal line.

107. 108.

109. A point moves along the curve in such a way that the
value is increasing at a rate of 2 units per second. At what

rate is changing for each of the following values?

(a) (b) (c)

110. Surface Area The edges of a cube are expanding at a rate
of 5 centimeters per second. How fast is the surface area
changing when each edge is 4.5 centimeters?

111. Depth The cross section of a five-meter trough is an isosce-
les trapezoid with a two-meter lower base, a three-meter upper
base, and an altitude of 2 meters. Water is running into the
trough at a rate of 1 cubic meter per minute. How fast is the
water level rising when the water is 1 meter deep?

112. Linear and Angular Velocity A rotating beacon is located
1 kilometer off a straight shoreline (see figure). If the beacon
rotates at a rate of 3 revolutions per minute, how fast (in
kilometers per hour) does the beam of light appear to be
moving to a viewer who is kilometer down the shoreline?

113. Moving Shadow A sandbag is dropped from a balloon at a
height of 60 meters when the angle of elevation to the sun is

(see figure). Find the rate at which the shadow of the sand-
bag is traveling along the ground when the sandbag is at a
height of 35 meters. Hint: The position of the sandbag is
given by 
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The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. 

Click on to view the complete solution of the exercise.

Click on to print an enlarged copy of the graph.
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P.S. Problem Solving

1. Consider the graph of the parabola 

(a) Find the radius of the largest possible circle centered on the
axis that is tangent to the parabola at the origin, as show in

the figure. This circle is called the circle of curvature (see
Section 12.5). Find the equation of this circle. Use a
graphing utility to graph the circle and parabola in the same
viewing window to verify your answer.

(b) Find the center of the circle of radius 1 centered on the
axis that is tangent to the parabola at two points, as shown

in the figure. Find the equation of this circle. Use a graphing
utility to graph the circle and parabola in the same viewing
window to verify your answer.

Figure for 1(a) Figure for 1(b)

2. Graph the two parabolas and in the
same coordinate plane. Find equations of the two lines simulta-
neously tangent to both parabolas.

3. (a) Find the polynomial whose value and
slope agree with the value and slope of at the
point 

(b) Find the polynomial whose value
and first two derivatives agree with the value and first two
derivatives of at the point This polyno-
mial is called the second-degree Taylor polynomial of

at 

(c) Complete the table comparing the values of and What
do you observe?

(d) Find the third-degree Taylor polynomial of at

4. (a) Find an equation of the tangent line to the parabola at
the point 

(b) Find an equation of the normal line to at the point
(The normal line is perpendicular to the tangent line.)

Where does this line intersect the parabola a second time?

(c) Find equations of the tangent line and normal line to 
at the point 

(d) Prove that for any point on the parabola
the normal line intersects the graph a second time.

5. Find a third-degree polynomial that is tangent to the line
at the point and tangent to the line

at the point 

6. Find a function of the form that is tangent
to the line at the point and tangent to the line 

at the point 

7. The graph of the eight curve,

is shown below.

(a) Explain how you could use a graphing utility to graph this
curve.

(b) Use a graphing utility to graph the curve for various values
of the constant Describe how affects the shape of the
curve.

(c) Determine the points on the curve where the tangent line is
horizontal.

8. The graph of the pear-shaped quartic,

is shown below.

(a) Explain how you could use a graphing utility to graph this
curve.

(b) Use a graphing utility to graph the curve for various values
of the constants and Describe how and affect the
shape of the curve.

(c) Determine the points on the curve where the tangent line is
horizontal.
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9. A man 6 feet tall walks at a rate of 5 feet per second toward a
streetlight that is 30 feet high (see figure). The man’s 3-foot-tall
child follows at the same speed, but 10 feet behind the man. At
times, the shadow behind the child is caused by the man, and at
other times, by the child.

(a) Suppose the man is 90 feet from the streetlight. Show that
the man’s shadow extends beyond the child’s shadow.

(b) Suppose the man is 60 feet from the streetlight. Show that
the child’s shadow extends beyond the man’s shadow.

(c) Determine the distance from the man to the streetlight at
which the tips of the two shadows are exactly the same
distance from the streetlight.

(d) Determine how fast the tip of the shadow is moving as a
function of the distance between the man and the street
light. Discuss the continuity of this shadow speed function.

Figure for 9 Figure for 10

10. A particle is moving along the graph of (see figure).
When the component of its position is increasing at
the rate of 1 centimeter per second.

(a) How fast is the component changing at this moment?

(b) How fast is the distance from the origin changing at this
moment?

(c) How fast is the angle of inclination changing at this
moment?

11. Let be a differentiable function for all Prove that if
for all and then for

all What does the graph of look like?

12. Let be a function satisfying Prove that if
for all and then is differentiable

and for all Find an example of a function
satisfying 

13. The fundamental limit assumes that is measured

in radians. What happens if you assume that is measured in
degrees instead of radians?

(a) Set your calculator to degree mode and complete the table.

(b) Use the table to estimate

for in degrees. What is the exact value of this limit? (Hint:
radians)

(c) Use the limit definition of the derivative to find 

for in degrees.

(d) Define the new functions and
where Find and 

Use the Chain Rule to calculate 

(e) Explain why calculus is made easier by using radians
instead of degrees.

14. An astronaut standing on the moon throws a rock into the air.
The height of the rock is 

where is measured in feet and is measured in seconds.

(a) Find expressions for the velocity and acceleration of the
rock.

(b) Find the time when the rock is at its highest point by
finding the time when the velocity is zero. What is the
height of the rock at this time?

(c) How does the acceleration of the rock compare with the
acceleration due to gravity on Earth?

15. If is the acceleration of an object, the jerk is defined by

(a) Use this definition to give a physical interpretation of 

(b) Find for the slowing vehicle in Exercise 117 in Section
2.3  and interpret the result.

(c) The figure shows the graph of the position, velocity,
acceleration, and jerk functions of a vehicle. Identify each
graph and explain your reasoning.
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